72 resultados para Plasmodium malariae
Resumo:
Background: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. Methods: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. Results and conclusions: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.
Resumo:
Objective-The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. Methods and Results-DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-gamma levels, and ameliorated clinical score (day 5) with a trend for increased survival. Conclusion-Therapeutic use of DF in malaria is proposed. (Arterioscler Thromb Vasc Biol. 2012; 32:786-798.)
Resumo:
More than 40% of the World population is at risk of contracting malaria, which affects primarily poor populations in tropical and subtropical areas. Antimalarial pharmacotherapy has utilised plant-derived products such as quinine and artemisinin as well as their derivatives. However, worldwide use of these antimalarials has caused the spread of resistant parasites, resulting in increased malaria morbidity and mortality. Considering that the literature has demonstrated the antimalarial potential of triterpenes, specially betulinic acid (1) and ursolic acid (2), this study investigated the antimalarial activity against P. falciparum chloroquine-sensitive 3D7 strain of some new derivatives of 1 and 2 with modifications at C-3 and C-28. The antiplasmodial study employed flow cytometry and spectrofluorimetric analyses using YOYO-1, dihydroethidium and Fluo4/AM for staining. Among the six analogues obtained, compounds 1c and 2c showed excellent activity (IC50 = 220 and 175 nM, respectively) while 1a and b demonstrated good activity ( IC50 = 4 and 5 mu M, respectively). After cytotoxicity evaluation against HEK293T cells, 1a was not toxic, while 1c and 2c showed IC50 of 4 mu M and a selectivity index (SI) value of 18 and 23, respectively. Moreover, compound 2c, which presents the best antiplasmodial activity, is involved in the calcium-regulated pathway(s).
Resumo:
Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a 3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.
Resumo:
Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
A new species of the genus Henneguya (Henneguya multiplasmodialis n. sp.) was found infecting the gills of three of 89 specimens (3.3%) of Pseudoplatystoma corruscans and two of 79 specimens (2.6%) of Pseudoplatystoma reticulatum from rivers in the Pantanal wetland, Brazil. Partial sequencing of the 18S rDNA gene of the spores obtained from one plasmodium from the gills of P. corruscans and other one from the gills of P. reticulatum, respectively, resulted in a total of 1560 and 1147 base pairs. As the spores of H. multiplasmodialis n. sp. resemble those of Henneguya corruscans, which is also a parasite of P. corruscans, sequencing of the 18S rDNA gene of the spores of H. corruscans found on P. corruscans caught in the Brazilian Pantanal wetland was also provided to avoid any taxonomic pendency between these two species, resulting in 1913 base pairs. The sequences of H. multiplasmodialis n. sp. parasite of P. corruscans and P. reticulatum and H. corruscans did not match any of the Myxozoa available in the GenBank. The similarity of H. multiplasmodialis n. sp. obtained from P. corruscans to that from P. reticulatum was of 99.7%. Phylogeny revealed a strong tendency among Henneguya species to form clades based on the order and/or family of the host fish. H. multiplasmodialis n. sp. clustered in a clade with Henneguya eirasi and H. corruscans, which are also parasites of siluriforms of the family Pimelodidae and, together with the clade composed of Henneguya spp. parasites of siluriforms of the family Ictaluridae, formed a monophyletic clade of parasites of siluriform hosts. The histological study revealed that the wall of the plasmodia of H. multiplasmodialis n. sp. were covered with a stratified epithelium rich in club cells and supported by a layer of connective tissue. The interior of the plasmodia had a network of septa that divided the plasmodia into numerous compartments. The septa were composed of connective tissue also covered on both sides with a stratified epithelium rich in club cells. Inflammatory infiltrate was found in the tissue surrounding the plasmodia as well as in the septa. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondonia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An. gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.
Resumo:
Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T-reg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T-reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-gamma production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-alpha and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T-reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.
Resumo:
Background: Anopheles (Kerteszia) cruzii is a primary vector of Plasmodium parasites in Brazil's Atlantic Forest. Adult females of An. cruzii and An. homunculus, which is a secondary malaria vector, are morphologically similar and difficult to distinguish when using external morphological characteristics only. These two species may occur syntopically with An. bellator, which is also a potential vector of Plasmodium species and is morphologically similar to An. cruzii and An. homunculus. Identification of these species based on female specimens is often jeopardised by polymorphisms, overlapping morphological characteristics and damage caused to specimens during collection. Wing geometric morphometrics has been used to distinguish several insect species; however, this economical and powerful tool has not been applied to Kerteszia species. Our objective was to assess wing geometry to distinguish An. cruzii, An. homunculus and An. bellator. Methods: Specimens were collected in an area in the Serra do Mar hotspot biodiversity corridor of the Atlantic Forest biome (Cananeia municipality, State of Sao Paulo, Brazil). The right wings of females of An. cruzii (n= 40), An. homunculus (n= 50) and An. bellator (n= 27) were photographed. For each individual, 18 wing landmarks were subjected to standard geometric morphometrics. Discriminant analysis of Procrustean coordinates was performed to quantify wing shape variation. Results: Individuals clustered into three distinct groups according to species with a slight overlap between representatives of An. cruzii and An. homunculus. The Mahalanobis distance between An. cruzii and An. homunculus was consistently lower (3.50) than that between An. cruzii and An. bellator (4.58) or An. homunculus and An. bellator (4.32). Pairwise cross-validated reclassification showed that geometric morphometrics is an effective analytical method to distinguish between An. bellator, An. cruzii and An. homunculus with a reliability rate varying between 78-88%. Shape analysis revealed that the wings of An. homunculus are narrower than those of An. cruzii and that An. bellator is different from both of the congeneric species. Conclusion: It is possible to distinguish among the vectors An. cruzii, An. homunculus and An. bellator based on female wing characteristics.
Resumo:
Background: The most substantial and best preserved area of Atlantic Forest is within the biogeographical sub-region of Serra do Mar. The topographic complexity of the region creates a diverse array of microclimates, which can affect species distribution and diversity inside the forest. Given that Atlantic Forest includes highly heterogeneous environments, a diverse and medically important Culicidae assemblage, and possible species co-occurrence, we evaluated mosquito assemblages from bromeliad phytotelmata in Serra do Mar (southeastern Brazil). Methods: Larvae and pupae were collected monthly from Nidularium and Vriesea bromeliads between July 2008 and June 2009. Collection sites were divided into landscape categories (lowland, hillslope and hilltop) based on elevation and slope. Correlations between bromeliad mosquito assemblage and environmental variables were assessed using multivariate redundancy analysis. Differences in species diversity between bromeliads within each category of elevation were explored using the Renyi diversity index. Univariate binary logistic regression analyses were used to assess species co-occurrence. Results: A total of 2,024 mosquitoes belonging to 22 species were collected. Landscape categories (pseudo-F value = 1.89, p = 0.04), bromeliad water volume (pseudo-F = 2.99, p = 0.03) and bromeliad fullness (Pseudo-F = 4.47, p < 0.01) influenced mosquito assemblage structure. Renyi diversity index show that lowland possesses the highest diversity indices. The presence of An. homunculus was associated with Cx. ocellatus and the presence of An. cruzii was associated with Cx. neglectus, Cx. inimitabilis fuscatus and Cx. worontzowi. Anopheles cruzii and An. homunculus were taken from the same bromeliad, however, the co-occurrence between those two species was not statistically significant. Conclusions: One of the main findings of our study was that differences in species among mosquito assemblages were influenced by landscape characteristics. The bromeliad factor that influenced mosquito abundance and assemblage structure was fullness. The findings of the current study raise important questions about the role of An. homunculus in the transmission of Plasmodium in Serra do Mar, southeastern Atlantic Forest.
Resumo:
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.
Resumo:
Background: Studies in South-East Asia have suggested that early diagnosis and treatment with artesunate (AS) and mefloquine (MQ) combination therapy may reduce the transmission of Plasmodium falciparum malaria and the progression of MQ resistance. Methods: The effectiveness of a fixed-dose combination of AS and MQ (ASMQ) in reducing malaria transmission was tested in isolated communities of the Jurua valley in the Amazon region. Priority municipalities within the Brazilian Legal Amazon area were selected according to pre-specified criteria. Routine national malaria control programmatic procedures were followed. Existing health structures were reinforced and health care workers were trained to treat with ASMQ all confirmed falciparum malaria cases that match inclusion criteria. A local pharmacovigilance structure was implemented. Incidence of malaria and hospitalizations were recorded two years before, during, and after the fixed-dose ASMQ intervention. In total, between July 2006 and December 2008, 23,845 patients received ASMQ. Two statistical modelling approaches were applied to monthly time series of P. falciparum malaria incidence rates, P. falciparum/Plasmodium vivax infection ratio, and malaria hospital admissions rates. All the time series ranged from January 2004 to December 2008, whilst the intervention period span from July 2006 to December 2008. Results: The ASMQ intervention had a highly significant impact on the mean level of each time series, adjusted for trend and season, of 0.34 (95% CI 0.20 - 0.58) for the P. falciparum malaria incidence rates, 0.67 (95% CI 0.50 - 0.89) for the P. falciparum/P. vivax infection ratio, and 0.53 (95% CI 0.41 - 0.69) for the hospital admission rates. There was also a significant change in the seasonal (or monthly) pattern of the time series before and after intervention, with the elimination of the malaria seasonal peak in the rainy months of the years following the introduction of ASMQ. No serious adverse events relating to the use of fixed-dose ASMQ were reported. Conclusions: In the remote region of the Jurua valley, the early detection of malaria by health care workers and treatment with fixed-dose ASMQ was feasible and efficacious, and significantly reduced the incidence and morbidity of P. falciparum malaria.
Resumo:
Evaluation of: Rodriguez D, Gonzalez-Aseguinolaza G, Rodriguez JR et al. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLoS ONE 7(4), e34445 (2012). Recently, a vaccine against malaria was successfully tested in a human Phase III trial. The efficacy of this vaccine formulation, based on the Plasmodium falciparum circumsporozoite protein, was approximately 50% and correlated with the presence of antibodies specific to the infective stages of the malaria parasites. Different strategies are being pursued to improve vaccine efficacy levels. One such strategy is the induction of specific cytotoxic T cells that can destroy the intracellular hepatocyte stages of the malaria parasite. In this study, a novel vaccination protocol was developed to elicit strong immune responses mediated by CD8(+) cytotoxic cells specific to the circumsporozoite protein. As proof-of-concept, the authors used the rodent malaria Plasmodium yoelii parasite. The vaccination strategy consisted of a heterologous prime-boost vaccination regimen involving porcine parvovirus-like particles for priming and the modified vaccinia virus Ankara for the booster immunization, both of which expressed the immunodominant CD8 epitope of the P. yoelii circumsporozoite protein. Results from this experimental model were extremely meaningful. This vaccination strategy led to a significant T-cell immune response mediated by CD8(+) multifunctional T effector and effector-memory cells. However, most importantly for the malaria vaccine development was the fact that following a sporozoite challenge, immunized mice eliminated more than 97% of the malaria parasites during the hepatocyte stages. These results confirm and extend a vast body of knowledge showing that a heterologous prime-boost vaccination strategy can elicit strong CD8(+) T-cell-mediated protective immunity and may increase the efficacy of malaria vaccines.
Resumo:
Abstract Background The hydroxynaphthoquinones have been extensively investigated over the past 50 years for their anti-malarial activity. One member of this class, atovaquone, is combined with proguanil in Malarone®, an important drug for the treatment and prevention of malaria. Methods Anti-malarial activity was assessed in vitro for a series of 3-alkyl-2-hydroxy-1,4-naphthoquinones (N1-N5) evaluating the parasitaemia after 48 hours of incubation. Potential cytotoxicity in HEK293T cells was assessed using the MTT assay. Changes in mitochondrial membrane potential of Plasmodium were measured using the fluorescent dye Mitrotracker Red CMXROS. Results Four compounds demonstrated IC50s in the mid-micromolar range, and the most active compound, N3, had an IC50 of 443 nM. N3 disrupted mitochondrial membrane potential, and after 1 hour presented an IC50ΔΨmit of 16 μM. In an in vitro cytotoxicity assay using HEK 293T cells N3 demonstrated no cytotoxicity at concentrations up to 16 μM. Conclusions N3 was a potent inhibitor of mitochondrial electron transport, had nanomolar activity against cultured Plasmodium falciparum and showed minimal cytotoxicity. N3 may serve as a starting point for the design of new hydroxynaphthoquinone anti-malarials.