49 resultados para Liver -- Diseases -- Genetic aspects
Resumo:
The finished version of the human genome sequence was completed in 2003, and this event initiated a revolution in medical practice, which is usually referred to as the age of genomic or personalized medicine. Genomic medicine aims to be predictive, personalized, preventive, and also participative (4Ps). It offers a new approach to several pathological conditions, although its impact so far has been more evident in mendelian diseases. This article briefly reviews the potential advantages of this approach, and also some issues that may arise in the attempt to apply the accumulated knowledge from genomic medicine to clinical practice in emerging countries. The advantages of applying genomic medicine into clinical practice are obvious, enabling prediction, prevention, and early diagnosis and treatment of several genetic disorders. However, there are also some issues, such as those related to: (a) the need for approval of a law equivalent to the Genetic Information Nondiscrimination Act, which was approved in 2008 in the USA; (b) the need for private and public funding for genetics and genomics; (c) the need for development of innovative healthcare systems that may substantially cut costs (e.g. costs of periodic medical followup); (d) the need for new graduate and postgraduate curricula in which genomic medicine is emphasized; and (e) the need to adequately inform the population and possible consumers of genetic testing, with reference to the basic aspects of genomic medicine.
Resumo:
Since its discovery, myostatin (MSTN) has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.
Resumo:
Angiomyolipomas (AMLs) are mesenchymal neoplasms, named so because of the complex tissue composition represented by variable proportions of mature adipose tissue, smooth muscle cells, and dysmorphic blood vessels. Although AMLs may rise in different sites of the body, they are mostly observed in the kidney and liver. In the case of renal AMLs, they are described in two types: isolated AMLs and AMLs associated with tuberous sclerosis (TS). While most cases of AMLs are found incidentally during imaging examinations and are asymptomatic, others may reach huge proportions causing symptoms. Pulmonary lymphangioleiomyomatosis (LAM) is a rare benign disease characterized by cystic changes in the pulmonary parenchyma and smooth muscle proliferation, leading to a mixed picture of interstitial and obstructive disease. AML and LAM constitute major features of tuberous sclerosis complex (TSC), a multisystem autosomal dominant tumor-suppressor gene complex diagnosis. The authors report the case of a young female patient who presented a huge abdominal tumor, which at computed tomography (CT) show a fat predominance. The tumor displaced the right kidney and remaining abdominal viscera to the left. Chest CT also disclosed pulmonary lesions compatible with lymphangioleiomyomatosis. Because of sudden abdominal pain accompanied by a fall in the hemoglobin level, the patient underwent an urgent laparotomy. The excised tumor was shown to be a giant renal AML with signs of bleeding in its interior. The authors call attention to the diagnosis of AML and the huge proportions that the tumor can reach, as well as for ruling out the TSC diagnosis, once it may impose genetic counseling implications.
Resumo:
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.