48 resultados para Lattice-binary parameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas­ like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maintenance of biodiversity is a long standing puzzle in ecology. It is a classical result that if the interactions of the species in an ecosystem are chosen in a random way, then complex ecosystems can't sustain themselves, meaning that the structure of the interactions between the species must be a central component on the preservation of biodiversity and on the stability of ecosystems. The rock-paper-scissors model is one of the paradigmatic models that study how biodiversity is maintained. In this model 3 species dominate each other in a cyclic way (mimicking a trophic cycle), that is, rock dominates scissors, that dominates paper, that dominates rock. In the original version of this model, this dominance obeys a 'Z IND 3' symmetry, in the sense that the strength of dominance is always the same. In this work, we break this symmetry, studying the effects of the addition of an asymmetry parameter. In the usual model, in a two dimensional lattice, the species distribute themselves according to spiral patterns, that can be explained by the complex Landau-Guinzburg equation. With the addition of asymmetry, new spatial patterns appear during the transient and the system either ends in a state with spirals, similar to the ones of the original model, or in a state where unstable spatial patterns dominate or in a state where only one species survives (and biodiversity is lost).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.