53 resultados para HYDRATED PHOSPHOLIPID-BILAYERS
Resumo:
Miltefosine (MT) is an alkylphospholipid approved for breast cancer metastasis and visceral leishmaniasis treatments, although the respective action mechanisms at the molecular level remain poorly understood. In this work, the interaction of miltefosine with the lipid component of stratum corneum (SC), the uppermost skin layer, was studied by electron paramagnetic resonance (EPR) spectroscopy of several fatty acid spin-labels. In addition, the effect of miltefosine on (i) spherical lipid vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and (ii) lipids extracted from SC was also investigated, by EPR and time-resolved polarized fluorescence methods. In SC of neonatal Wistar rats, 4% (w/w) miltefosine give rise to a large increase of the fluidity of the intercellular membranes, in the temperature range from 6 to about 50 degrees C. This effect becomes negligible at temperatures higher that ca. 60 degrees C. In large unilamelar vesicles of DPPC no significant changes could be observed with a miltefosine concentration 25% molar, in close analogy with the behavior of biomimetic vesicles prepared with bovine brain ceramide, behenic acid and cholesterol. In these last samples, a 25 mol% molar concentration of miltefosine produced only a modest decrease in the bilayer fluidity. Although miltefosine is not a feasible skin permeation enhancer due to its toxicity, the information provided in this work could be of utility in the development of a MT topical treatment of cutaneous leishmaniasis. Published by Elsevier B.V.
Resumo:
The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.
Resumo:
The Human Secreted Group IID Phospholipase A(2) (hsPLA2GIID) may be involved in the human acute immune response. Here we have demonstrated that the hsPLA2GIID presents bactericidal and Ca2+-independent liposome membrane-damaging activities and we have compared these effects with the catalytic activity of active-site mutants of the protein. All mutants showed reduced hydrolytic activity against DOPC:DOPG liposome membranes, however bactericidal effects against Escherichia coli and Micrococcus luteus were less affected, with the D49K mutant retaining 30% killing of the Gram-negative bacteria at a concentration of 10 mu g/mL despite the absence of catalytic activity. The H48Q mutant maintained Ca2+-independent membrane-damaging activity whereas the G30S and D49K mutants were approximately 50% of the wild-type protein, demonstrating that phospholipid bilayer permeabilization by the hsPLA2GIID is independent of catalytic activity. We suggest that this Ca2+-independent damaging activity may play a role in the bactericidal function of the protein. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The objective of this study was to evaluate, in Nellore heifers, intake and digestibility of hydrolyzed sugarcane stored for different periods. The experimental design used was a 4 × 4 Latin square, four diets, four Nellore heifers with ruminal cannulas (initial body weight 285.4±23.08 kg and average initial age 14 months) and four periods of 21 days. The diets were composed by fresh sugarcane (time zero) or hydrolyzed sugarcane with addition of 0.5% of hydrated lime, stored for 24, 48 or 72 hours, as the unique forage. Intake and digestibility of feed fractions, nitrogen balance, microbial synthesis efficiency, total number of ruminal protozoans and ammoniacal nitrogen did not significantly change by storing sugarcane with addition of 0.5% of hydrated lime. Sugarcane pH varied quadratically for storage time, with maximum pH of 7.02 after 24 hours from lime addition. Ruminal liquid pH values were higher for heifers fed fresh sugarcane, in comparison with those fed hydrolyzed sugarcane. Sugarcane treated with 0.5% of hydrated lime stored for up to 72 hours does not change ruminal digestion to alter the amount of feed consumed by pubescent Nellore heifers. Thus, lime is a viable technology, once it allows long-duration storage and bee control on treated forage, which contributes to animal feeding logistics.
Resumo:
Abstract Background We have searched if plasma high density lipoprotein-cholesterol (HDL-C) concentration interferes simultaneously with whole-body cholesterol metabolism and insulin sensitivity in normal weight healthy adult subjects. Methods We have measured the activities of several plasma components that are critically influenced by insulin and that control lipoprotein metabolism in subjects with low and high HDL-C concentrations. These parameters included cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), lecithin cholesterol acyl transferase (LCAT), post-heparin lipoprotein lipase (LPL), hepatic lipase (HL), pre-beta-1HDL, and plasma sterol markers of cholesterol synthesis and intestinal absorption. Results In the high-HDL-C group, we found lower plasma concentrations of triglycerides, alanine aminotransferase, insulin, HOMA-IR index, activities of LCAT and HL compared with the low HDL-C group; additionally, we found higher activity of LPL and pre-beta-1HDL concentration in the high-HDL-C group. There were no differences in the plasma CETP and PLTP activities. Conclusions These findings indicate that in healthy hyperalphalipoproteinemia subjects, several parameters that control the metabolism of plasma cholesterol and lipoproteins are related to a higher degree of insulin sensitivity.
Resumo:
Biological membranes are constituted from lipid bilayers and proteins. Investigation of protein-membrane interaction, essential for biological function of cells, must rest upon solid knowledge of lipid bilayer behavior. Thus, extensive studies of an experimental model for membranes, lipid bilayers in water solution, have been undertaken in the last decades. These systems present structural, thermal and electrical properties which depend on temperature, ionic strength or concentration. In this talk, we shall discuss statistical models for lipid bilayers, as well as the relation between their properties and results for properties of lipid dispersions investigated by the laboratories supervised by Teresa Lamy (IF-USP) and Amando Ito (FFCL-USP).
Resumo:
Lamellar systems composed of lipid bilayers have been widely used as model system for investigating properties of biological membranes, interactions between membranes and with biomolecules. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present a systematic study of a lamellar system composed of lecithin and a commercial co-surfactant (Simusol), which is a mixture of ethoxylated fatty acids. Using X ray scattering and a new procedure to fit X-ray experimental data, we determine relevant parameters characterizing the lamellar structure, varying membrane composition from 100% of lecithin to 100% of Simulsol. We present experimental data illustrating the swelling behavior for the membrane of different compositions and the respective behavior of the Caillé parameter. From and GISAXS experiments on oriented films under controlled humidity we investigate the compressibility of the lamellar phase and the effect of incorporating co-surfactant. Combining the Caillé parameter and compressibility studies we determine the bending rigidity of membranes. The results obtained with this experimental approach and new procedure to fit X-ray experimental allows us to identify structural changes in the bilayer depending both on hydration and co-surfactant content, with implications on elastic properties of membranes.
Resumo:
This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection–absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.