50 resultados para Fully-Conjugated PPV Derivatives


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with septic shock and 12 healthy volunteers for exosome separation. Exosomes from septic patients and healthy individuals were investigated concerning their myocardial depressant effect in isolated heart and papillary muscle preparations. Results Exosomes from the plasma of septic patients significantly decreased positive and negative derivatives of left ventricular pressure in isolated rabbit hearts or developed tension and its first positive derivative in papillary muscles. Exosomes from healthy individuals decreased these variables non-significantly. In hearts from rabbits previously exposed to endotoxin, septic exosomes decreased positive and negative derivatives of ventricular pressure. This negative inotropic effect was fully reversible upon withdrawal of exosomes. Nitric oxide (NO) production from exosomes derived from septic shock patients was demonstrated by fluorescence. Also, there was an increase in myocardial nitrate content after exposure to septic exosomes. Conclusion Circulating platelet-derived exosomes from septic patients induced myocardial dysfunction in isolated heart and papillary muscle preparations, a phenomenon enhanced by previous in vivo exposure to lipopolysaccharide. The generation of NO by septic exosomes and the increased myocardial nitrate content after incubation with exosomes from septic patients suggest an NO-dependent mechanism that may contribute to myocardial dysfunction of sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of β-haematin formation. Results Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC6(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of β-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. Conclusions Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential oils of ripe fruits from Schinus terebinthifolius (Anacardiaceae), obtained using a pilot extractor and a Clevenger apparatus were chemically characterized. Due the high amount of (-)- α-pinene in both oils, this monoterpene was tested against the protozoan parasite Trypanosoma cruzi, showing a moderate potential (IC50 63.56 µg/mL) when compared to benznidazole (IC50 43.14 µg/mL). Otherwise, (-)- α-pinene oxide did not showed anti-trypanosomal activity (IC50 > 400 µg/mL) while (-)-pinane showed an IC50 of 56.50 µg/mL. The obtained results indicated that the epoxydation of α-pinene results to the loss of the anti-parasitic activity while its hydrogenation product, contributed slightly to the increased activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Former bioactivity-guided analysis of the marine invertebrate Eudistoma vannamei led to the isolation of staurosporine derivatives, which revealed strong cytotoxic activity against several human cancer cell lines. The occurrence of such alkaloids in E. vannamei may be correlated to the presence of associated biota, such as Streptomyces bacteria. In agreement to this hypothesis, marine microorganisms associated with E. vannamei were recovered and cultured, leading to a total of 84 isolated bacterial strains. Gas phase fragmentation reactions of staurosporine and derivatives were systematically studied and the analyzed results further supported by computational chemistry studies. The resulting fragment patterns were used to search for the presence of different derivatives in extracts of isolated microorganisms, thereby using LC-MS/MS analysis in MRM mode. These results evidenced that one isolated Streptomyces sp. was able to generate staurosporine, while none of the hydroxy-7-oxo derivatives were detected. Finally, significant cytotoxic activity against human cancer lines was observed for one of the extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the formation of self-assembled meso-tetrakis (p-sulfonatofenyl) porphyrin (H2 TPP'S POT. 4-''IND. 4') tubes stabilized by gold nanoparticles (NPs) in basic solution and on their spectroscopic chareterization. The role of the gold NPs in the aggregation dynamics of free-base sulfonated porphyrin (H2TPP'S POT. 4-''IND. 4') is also investigated. The direct conjugation of the gold NPs to the H2TPPS4 molecule quenches the fluorescence intensity, while absorption peaks are blue-shifted, indicating predominant H-type aggregation. It is observed that porphyrin molecules adsorbed on the surface of the gold NP interact and form tubes of maximum diameter ∼1.5 μm and length >100 μm. Steady-state and time-resolved spectroscopic techniques confirm nonradiative energy transfer from porphyrin to gold NP.