58 resultados para Energy|Materials science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, mesoporous titania is prepared by templating latex sphere arrays with four different sphere diameters at the micrometric scale (phi > 1 mu m). The mesoporous titania homogeneously covers the latex spheres and substrate, forming a thin coating characterized by N-2 adsorption isotherm, small angle X-rays scattering, atomic force, field emission and transmission electronic microscopies. Mesoporous titania has been templated into different shapes such as hollow particles and monoliths according to the amount of sol used to fill the voids of the close packed latex spheres. Titania topography strongly depends on the adsorption of polymeric segments over latex spheres surface, which could be decreased by changing the dimensions of latex spheres (phi = 9.5 mu m) generating a lamellar architecture. Thus, micrometric latex sphere arrays can be used to achieve new surface patterns for mesoporous materials via a fast and inexpensive chemical route for construction of functional devices in different technological fields such as energy conversion, inclusion chemistry and biomaterials. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of NO on transition-metal (TM) surfaces has been widely studied by experimental and theoretical techniques; however, our atomistic understanding of the interaction of nitrogen monoxide (NO) with small TM clusters is far from satisfactory, which compromises a deep understanding of real catalyst devices. In this study, we report a density functional theory study of the adsorption properties of NO on the TM13 (TM = Rh, Pd, Ir, Pt) clusters employing the projected augmented wave method. We found that the interaction of NO with TM13 is much more complex than that for NO/TM(111). In particular, for low symmetry TM13 clusters, there is a strong rearrangement of the electronic charge density upon NO adsorption and, as a consequence, the adsorption energy shows a very complex dependence even for adsorption sites with the same local effective coordination. We found a strong enhancement of the binding energy of NO to the TM13 clusters compared with the TM(111) surfaces, as the antibonding NO states are not occupied for NO/TM13, and the general relationship based on the d-band model between adsorption energy and the center of gravity of the occupied d-states does not hold for the studied TM13 clusters, in particular, for clusters with low symmetry. In contrast with the adsorption energy trends, the geometric NO/TM13 parameters and the vibrational N-O frequencies for different coordination sites follow the same trend as for the respective TM(111) surfaces, while the changes in the frequencies between different surfaces and TM13 clusters reflect the strong NO-TM13 interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 degrees C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C(2)mim)(OAc) (1.18 x 10(-4) S cm(-1) at 30 degrees C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural and electronic properties of the PtnTM55-n (TM = Co, Rh, Au) nanoalloys are investigated using density functional theory within the generalized gradient approximation and employing the all-electron projected augmented wave method. For TM = Co and Rh, the excess energy, which measures the relative energy stability of the nanoalloys, is negative for all Pt compositions. We found that the excess energy has similar values for a wide range of Pt compositions, i.e., n = 20-42 and n = 28-42 for Co and Rh, respectively, with the core shell icosahedron-like configuration (n = 42) being slightly more stable for both Co and Rh systems because of the larger release of the strain energy due to the smaller atomic size of the Co and Rh atoms. For TM = Au, the excess energy is positive for all compositions, except for n = 13, which is energetically favorable due to the formation of the core-shell structure (Pt in the core and Au atoms at the surface). Thus, our calculations confirm that the formation of core-shell structures plays an important role to increase the stability of nanoalloys. The center of gravity of the occupied d-states changes almost linearly as a function of the Pt composition, and hence, based on the d-band model, the magnitude of the adsorption energy of an adsorbate can be tuned by changing the Pt composition. The magnetic moments of PtnCo55-n decrease almost linearly as a function of the Pt composition; however, the same does not hold for PtRh and PtAu. We found an enhancement of the magnetic moments of PtRh by a few times by increasing Pt composition, which we explain by the compression effects induced by the large size of the Pt atoms compared with the Rh atoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree-Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55% This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different widths, representing the three families of AGNFs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The persistent luminescence of CdSiO3:Tb3+ was investigated with photoluminescence, thermoluminescence (TL), synchrotron radiation X-ray absorption (XANES and EXAFS) and UV-VUV spectroscopies. Only the typical intraconfigurational 4f(8)-4f(8) transitions of the Tb3+ ion were observed with no traces of band emission in either the conventional UV excited or persistent luminescence spectra. The trap structure from TL with three traps from 0.65 to 0.85 eV is ideal for room-temperature persistent luminescence similar to, e.g., Sr2MgSi2O7:Eu2+,R3+. Despite the rather low band gap energy, 5.28 eV, the persistent luminescence from Tb3+ is produced only under UV irradiation due to the inauspicious position of the F-7(6) ground level deep in the band gap of CdSiO3. This confirms the role of electrons as the charge carriers in the mechanism of Tb3+ persistent luminescence. The XANES spectra indicated the presence of only the trivalent Tb3+ species, thus excluding the direct Tb3+ -> Tb-IV oxidation during the charging process of persistent luminescence. Eventually, a unique persistent luminescence mechanism for Tb3+ in CdSiO3 was constructed based on the comprehensive experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We performed a first principles investigation on the electronic properties of 4f-rare earth substitutional impurities in zincblende gallium nitride (GaN:REGa, with RE=Eu, Gd, Tb, Dy, Ho, Er and Tm). The calculations were performed within the all electron methodology and the density functional theory. We investigated how the introduction of the on-site Hubbard U potential (GGA + U) corrects the electronic properties of those impurities. We showed that a self-consistent procedure to compute the Hubbard potential provides a reliable description on the position of the 4f-related energy levels with respect of the GaN valence band top. The results were compared to available data coming from a recent phenomenological model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.