48 resultados para Bone defect, Bone tissue engineering, Clinical studies, Orthopaedic research
Resumo:
The investigation of titanium (Ti) surface modifications aiming to increase implant osseointegration is one of the most active research areas in dental implantology. This study was carried out to evaluate the benefits of coating Ti with type I collagen on the osseointegration of dental implants. Acid etched Ti implants (AETi), either untreated or coated with type I collagen (ColTi), were placed in dog mandibles for three and eight weeks for histomorphometric, cellular and molecular evaluations of bone tissue response. While the histological aspects were essentially the same with both implants being surrounded by lamellar bone trabeculae, histomorphometric analysis showed more abundant bone formation in ColTi, mainly at three weeks. Cellular evaluation showed that cells harvested from bone fragments in close contact with ColTi display lower proliferative capacity and higher alkaline phosphatase activity, phenotypic features associated with more differentiated osteoblasts. Confirming these findings, molecular analyses showed that ColTi implants up-regulates the expression of a panel of genes well known as osteoblast markers. Our results present a set of evidences that coating AETi with collagen fastens the osseointegration by stimulating bone formation at the cellular and molecular levels, making this combination of morphological and biochemical modification a promising approach to treat Ti surfaces.
Resumo:
Osteoporosis is a global public health that affects postmenopausal women due to the deficiency of estrogen, a hormone that plays an important role in the microarchitecture of bone tissue. Osteoporosis predisposes to pathological bone fracture that can be repaired by conventional methods. However, depending on the severity and quantity of bone loss, the use of autogenous grafts or biomaterials such as hydroxyapatite might be necessary. The latter has received increasing attention in the medical field because of its good biological properties such as osteoconductivity and biocompatibility with bone tissue. The objective of this study was to evaluate using histologic and radiographic analyses, the osteogenic capacity of hydroxyapatite implanted into the femur of rats with ovariectomy-induced osteoporosis. Eighteen rats were divided into three groups with six animals in each: group nonovariectomized, bilaterally ovariectomized not receiving estrogen replacement therapy, and bilaterally ovariectomized submitted to estrogen replacement therapy. Defects were created experimentally in the distal epiphysis of the femur with a surgical drill and filled with porous hydroxyapatite granules. The animals were sacrificed 8 weeks after surgery. The volume of newly formed bone in the implant area was quantified by morphometrical methods. The results were analyzed by ANOVA followed by the Tukey test (P < 0.05). The hydroxyapatite granules showed good radiopacity. Histological analysis revealed less quantity of newly formed bone in the ovariectomized group not submitted to hormone replacement therapy. In conclusion, bone neoformation can be expected even in bones compromised by estrogen deficiency, but the quantity and velocity of bone formation are lower. Microsc. Res. Tech., 2011. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Background: The bone tissue responses to Cyanoacrylate have been described in the literature, but none used N-butyl-2-cyanoacrilate (NB-Cn) for bone graft fixation. Purpose: The aims of the study were: (a) to analyze the bone grafts volume maintenance fixed either with NB-Cn or titanium screw; (b) to assess the incorporation of onlay grafts on perforated recipient bed; and (c) the differences of expression level of tartrate-resistant acid phosphatase (TRAP) protein involved in bone resorption. Materials and Methods: Eighteen New Zealand White rabbits were submitted to calvaria onlay grafting on both sides of the mandible. On one side, the graft was fixed with NB-Cn, while on the other hand the bone graft was secured with an osteosynthesis screw. The computed tomography (CT) was performed just after surgery and at animals sacrifice, after 1 (n = 9) and 6 weeks (n = 9), in order to estimate the bone grafts volume along the experiments. Histological sections of the grafted areas were prepared to evaluate the healing of bone grafts and to assess the expression of TRAP protein. Results: The CT scan showed better volume maintenance of bone grafts fixed with NB-Cn (p = 0.05) compared with those fixed with screws, in both experimental times (analysis of variance). The immunohistochemical evaluation showed that the TRAP expression in a 6-week period was significantly higher compared with the 1-week period, without showing significant difference between the groups (Wilcoxon and MannWhitney). Histological analysis revealed that the NB-Cn caused periosteum damage, but provided bone graft stabilization and incorporation similar to the control group. Conclusion: The perforation provided by screw insertion into the graft during fixation may have triggered early revascularization and remodeling to render increased volume loss compared with the experimental group. These results indicate that the NB-Cn possesses equivalent properties to titanium screw to be used as bone fixation material in osteosynthesis.