33 resultados para type III secretion
Resumo:
Most cases of sporadic primary hyperparathyroidism present disturbances in a single parathyroid gland and the surgery of choice is adenomectomy. Conversely, hyperparathyroidism associated with multiple endocrine neoplasia type 1 (hyperparathyroidism/multiple endocrine neoplasia type 1) is an asynchronic, asymmetrical multiglandular disease and it is surgically approached by either subtotal parathyroidectomy or total parathyroidectomy followed by parathyroid auto-implant to the forearm. In skilful hands, the efficacy of both approaches is similar and both should be complemented by prophylactic thymectomy. In a single academic center, 83 cases of hyperparathyroidism/ multiple endocrine neoplasia type 1 were operated on from 1987 to 2010 and our first surgical choice was total parathyroidectomy followed by parathyroid auto-implant to the non-dominant forearm and, since 1997, associated transcervical thymectomy to prevent thymic carcinoid. Overall, 40% of patients were given calcium replacement (mean intake 1.6 g/day) during the first months after surgery, and this fell to 28% in patients with longer follow-up. These findings indicate that several months may be needed in order to achieve a proper secretion by the parathyroid auto-implant. Hyperparathyroidism recurrence was observed in up to 15% of cases several years after the initial surgery. Thus, long-term follow-up is recommended for such cases. We conclude that, despite a tendency to subtotal parathyroidectomy worldwide, total parathyroidectomy followed by parathyroid auto-implant is a valid surgical option to treat hyperparathyroidism/multiple endocrine neoplasia type 1. Larger comparative systematic studies are needed to define the best surgical approach to hyperparathyroidism/multiple endocrine neoplasia type 1.
Resumo:
Abstract Background Regardless the regulatory function of microRNAs (miRNA), their differential expression pattern has been used to define miRNA signatures and to disclose disease biomarkers. To address the question of whether patients presenting the different types of diabetes mellitus could be distinguished on the basis of their miRNA and mRNA expression profiling, we obtained peripheral blood mononuclear cell (PBMC) RNAs from 7 type 1 (T1D), 7 type 2 (T2D), and 6 gestational diabetes (GDM) patients, which were hybridized to Agilent miRNA and mRNA microarrays. Data quantification and quality control were obtained using the Feature Extraction software, and data distribution was normalized using quantile function implemented in the Aroma light package. Differentially expressed miRNAs/mRNAs were identified using Rank products, comparing T1DxGDM, T2DxGDM and T1DxT2D. Hierarchical clustering was performed using the average linkage criterion with Pearson uncentered distance as metrics. Results The use of the same microarrays platform permitted the identification of sets of shared or specific miRNAs/mRNA interaction for each type of diabetes. Nine miRNAs (hsa-miR-126, hsa-miR-1307, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-144, hsa-miR-199a-5p, hsa-miR-27a, hsa-miR-29b, and hsa-miR-342-3p) were shared among T1D, T2D and GDM, and additional specific miRNAs were identified for T1D (20 miRNAs), T2D (14) and GDM (19) patients. ROC curves allowed the identification of specific and relevant (greater AUC values) miRNAs for each type of diabetes, including: i) hsa-miR-1274a, hsa-miR-1274b and hsa-let-7f for T1D; ii) hsa-miR-222, hsa-miR-30e and hsa-miR-140-3p for T2D, and iii) hsa-miR-181a and hsa-miR-1268 for GDM. Many of these miRNAs targeted mRNAs associated with diabetes pathogenesis. Conclusions These results indicate that PBMC can be used as reporter cells to characterize the miRNA expression profiling disclosed by the different diabetes mellitus manifestations. Shared miRNAs may characterize diabetes as a metabolic and inflammatory disorder, whereas specific miRNAs may represent biological markers for each type of diabetes, deserving further attention.
Resumo:
NLRP3-inflammasome activation was evaluated in monocyte-derived dendritic cells (DC) obtained through IL-4 (IL4-DC) or IFN-α (IFN-DC) protocols and pulsed with chemically inactivated HIV-1. Inflammasome' genes expression and IL-1β secretion were compared in DC isolated from 15 healthy subjects (HC) and 10 HIV-1 infected individuals (HIV+). FINDINGS: Whether HIV was able to increased NLRP3-inflammasome genes expression and IL-1β secretion in IL4-DC from HC, the induction of inflammasome appeared significantly reduced in IFN-DC from HC, suggesting a different responsive state of IFN-DC compared to IL4-DC. No inflammasome activation was observed in IL4-DC as well as in IFN-DC derived from HIV + subjects, confirming previous findings on "unresponsive" state of DC derived from HIV + possibly due to chronic inflammatory state of these individuals. CONCLUSIONS: Our results showed that IFN-α differently modulates inflammasome expression during monocytes-DC in vitro differentiation. These findings could be of interest considering the on-going research about DC manipulation and therapeutic strategies for HIV + involving DC-based immune-vaccines.