53 resultados para tropical deciduous forest
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A new species of Oreobates is described from Cavernas do Peruacu National Park, Januaria, Minas Gerais state, in the Atlantic Dry Forests of Brazil. The new species is distinguished from all other Oreobates by having the following combination of characters: large tympanum, discs broadly enlarged and truncate on Fingers III and IV, smooth dorsal skin, nuptial pads absent, snout subacuminate, and a very short pulsatile (2-3 pulses) single-noted advertisement call with dominant frequency of about 3150 Hz, and no harmonic structure. Molecular phylogenetic analyses using partial sequences of the mitochondrial genes cytochrome b (cyt b) and 16S using multiple outgroups recovered the new species within Oreobates and sister to O. heterodactylus. The latter species inhabits the Dry Forests of Mato Grosso (Cerrado) and Bolivia (Chiquitano forests), and is strictly associated to these habitats, which suggests a preterit connection between Chiquitano and Atlantic Dry Forests. The discovery of a new Oreobates in the Atlantic Dry Forest is of great importance for the conservation of these dry forests, as it is known only from this type of habitat.
Resumo:
This study extends the current knowledge regarding the use of plants for the passive accumulation of anthropogenic PAHs that are present in the atmospheric total suspended particles (TSP) in the tropics and sub-tropics. It is of major relevance because the anthropic emissions of TSP containing PAHs are significant in these regions, but their monitoring is still scarce. We compared the biomonitor efficiency of Lolium multiflorum 'Lema' and tropical tree species (Tibouchina pukka and Psidium guajava 'Paluma') that were growing in an intensely TSP-polluted site in Cubatao (SE Brazil), and established the species with the highest potential for alternative monitoring of PAHs. PAHs present in the TSP indicated that the region is impacted by various emission sources. L. multiflorum showed a greater efficiency for the accumulation of PAH compounds on their leaves than the tropical trees. The linear regression between the logBCF and logKoa revealed that L. multiflorum is an efficient biomonitor of the profile of light and heavy PAHs present in the particulate phase of the atmosphere during dry weather and mild temperatures. The grass should be used only for indicating the PAHs with higher molecular weight in warmer and wetter periods. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.
Resumo:
(Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae)). The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (alpha-xylosidase, beta-galactosidase, beta-glucosidase and xyloglucan endo-beta-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, alpha-xilosidase seems to be more important than beta-glucosidase and beta-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.
Resumo:
The Atlantic Forest is one of the most threatened tropical biomes, with much of the standing forest in small (less than 50 ha), disturbed and isolated patches. The pattern of land-use and land-cover change (LULCC) which has resulted in this critical scenario has not yet been fully investigated. Here, we describe the LULCC in three Atlantic Forest fragmented landscapes (Sao Paulo, Brazil) between 1960-1980s and 1980-2000s. The three studied landscapes differ in the current proportion of forest cover, having 10%, 30% and 50% respectively. Between the 1960s and 1980s. forest cover of two landscapes was reduced while the forest cover in the third landscape increased slightly. The opposite trend was observed between the 1980s and 2000s: forest regeneration was greater than deforestation at the landscapes with 10% and 50% of forest cover and, as a consequence, forest cover increased. By contrast, the percentage of forest cover at the landscape with 30% of forest cover was drastically reduced between the 1980s and 2000s. LULCC deviated from a random trajectory, were not constant through time in two study landscapes and were not constant across space in a given time period. This landscape dynamism in single locations over small temporal scales is a key factor to be considered in models of LULCC to accurately simulate future changes for the Atlantic Forest. In general, forest patches became more isolated when deforestation was greater than forest regeneration and became more connected when forest regeneration was greater than deforestation. As a result of the dynamic experienced by the study landscapes, individual forest patches currently consist of a mosaic of different forest age classes which is likely to impact bio-diversity. Furthermore, landscape dynamics suggests the beginning of a forest transition in some Atlantic Forest regions, what could be of great importance for biodiversity conservation due to the potential effects of young secondary forests in reducing forest isolation and maintaining a significant amount of the original biodiversity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to estimate the stock of biomass and organic carbon in a montane mixed shade forest located near General Carneiro, PR. 20 plots of 12 m x 12 m were installed, in which all trees with a CBH (Circumference at Breast Height) >= 31.4 cm were felled. From these the following information was obtained: total height, commercial height (agreed as being the morphological inversion point in the natural forest and the height of the first live branch), CBH, identification and collection of herbarium specimens. For the quantification of biomass in the understory and roots, three subunits 1 m x 1 m in each sampling unit were installed (12 m x 12 m) arranged in the lower left corner, center and diagonal upper right corner. To quantify accumulated litter at random, eight samples in each sampling unit were collected (12 m x 12 m), using a metal device measuring 0.25 m x 0.25 m. The montane mixed shade forest has more than 85% of its total biomass and total organic carbon stored in above ground plant structures. The total stock of organic carbon found in this study (104.7 Mg ha(-1)) demonstrates the importance of maintaining and preserving natural ecosystems as a way of maintaining this stock of organic carbon fixed in plant biomass.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
The forest-like characteristics of agroforestry systems create a unique opportunity to combine agricultural production with biodiversity conservation in human-modified tropical landscapes. The cacao-growing region in southern Bahia, Brazil, encompasses Atlantic forest remnants and large extensions of agroforests, locally known as cabrucas, and harbors several endemic large mammals. Based on the differences between cabrucas and forests, we hypothesized that: (1) non-native and non-arboreal mammals are more frequent, whereas exclusively arboreal and hunted mammals are less frequent in cabrucas than forests; (2) the two systems differ in mammal assemblage structure, but not in species richness; and (3) mammal assemblage structure is more variable among cabrucas than forests. We used camera-traps to sample mammals in nine pairs of cabruca-forest sites. The high conservation value of agroforests was supported by the presence of species of conservation concern in cabrucas, and similar species richness and composition between forests and cabrucas. Arboreal species were less frequently recorded, however, and a non-native and a terrestrial species adapted to open environments (Cerdocyon thous) were more frequently recorded in cabrucas. Factors that may overestimate the conservation value of cabrucas are: the high proportion of total forest cover in the study landscape, the impoverishment of large mammal fauna in forest, and uncertainty about the long-term maintenance of agroforestry systems. Our results highlight the importance of agroforests and forest remnants for providing connectivity in human-modified tropical forest landscapes, and the importance of controlling hunting and dogs to increase the value of agroforestry mosaics.
Resumo:
In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Euterpe edulis is an endangered species due to palm heart overharvesting, the most important non-timber forest product of the Brazilian Atlantic Forest, and fruit exploitation has been introduced as a low impacting alternative. However, E. edulis is a keystone species for frugivores birds, and even the impact of fruit exploitation needs to be better investigated. Since this species occurs over contrasting habitats, the establishment of site-specific standards and limits for exploitation may also be essential to achieve truly sustainable management. In this context, we sought to investigate how soil chemical composition would potentially affect E. edulis (Arecaceae) palm heart and fruit exploitation considering current standards of management. We studied natural populations found in Restinga Forest and Atlantic Rainforest remnants established within Natural Reserves of Sao Paulo State, SE Brazil, where 10.24 ha permanent plots, composed of a grid of 256 subplots (20 m x 20 m), were located. In each of these subplots, we evaluated soil chemical composition and diameter at breast height of E. edulis individuals. Additionally, we evaluated fruit yield in 2008 and 2009 in 20 individuals per year. The Atlantic Rainforest population had a much higher proportion of larger diameter individuals than the population from the Restinga Forest, as a result of habitat-mediated effects, especially those related to soil. Sodium and potassium concentration in Restinga Forest soils, which have strong negative and positive effect on palm growth, respectively, played a key role in determining those differences. Overall, the number of fruits that could be exploited in the Atlantic Rainforest was four times higher than in Restinga Forest. If current rules for palm heart and fruit harvesting were followed without any restriction to different habitats, Restinga Forest populations are under severe threat, as this study shows that they are not suitable for sustainable management of both fruits and palm heart. Hence, a habitat-specific approach of sustainable management is needed for this species in order to respect the demographic and ecological dynamics of each population to be managed. These findings suggest that any effort to create general management standards of low impacting harvesting may be unsuccessful if the species of interest occur over a wide range of ecosystems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Questions What are the main features of the seed rain in a fragmented Atlantic forest landscape? Can seed rain species attributes (life form, dispersal mode, successional status) relate to the spatial arrangement (size and number of fragments, edge density and presence of corridor) of forest fragments in the landscape? How does the rain forest landscape structure affect the seed rain? Location Atlantic rainforest, Sao Paulo State, Southeastern Brazil. Methods Seed rain samples were collected monthly throughout 1yr, counted, identified and classified according to species dispersal mode, successional status and life form. Seed rain composition was compared with woody species near the seed traps. Relationships between seed rain composition and landscape spatial arrangement (fragment area, presence of corridor, number of fragments in the surroundings, proximity of fragments, and edge density) were tested using canonical correspondence analysis (CCA). Results We collected 20142 seeds belonging to 115 taxa, most of them early successional and anemochorous trees. In general, the seed rain had a species composition distinct from that of the nearby forest tree community. Small isolated fragments contained more seeds, mainly of anemochorous, epiphytic and early-successional species; large fragments showed higher association with zoochorous and late-successional species compared to small fragments. The CCA significantly distinguished the species dispersal mode according to fragment size and isolation, anemochorous species being associated to small and isolated fragments, and zoochorous species to larger areas and fragment aggregation. Nevertheless, a gradient driven by proximity (PROX) and edge density (ED) segregated lianas (in the positive extremity), early successional and epiphyte species (in the negative end); large fragments were positively associated to PROX and ED. Conclusions The results highlight the importance of the size and spatial arrangement of forest patches to promote habitat connectivity and improve the flux of animal-dispersed seeds. Landscape structure controls seed fluxes and affects plant dispersal capacity, potentially influencing the composition and structure of forest fragments. The seed rain composition may be used to assess the effects of landscape spatial structure on plant assemblages, and provide relevant information for biodiversity conservation.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.