38 resultados para stars: horizontal-branch
Resumo:
Deep Galileo (Telescopio Nazionale Galileo) B, V and I images of Segue 3, reaching V ∼ 25, reveal that it is the youngest globular cluster known so far in the Galaxy. A young age of 3.2 Gyr is found, differently from a previous estimate of 12 Gyr. It also appears to be moderately metal rich with [Fe/H] ∼ −0.8, rather than [Fe/H] ∼ −1.7, as previously suggested by Fadely et al. A main difference in the age derivation relative to Fadely et al. comes from the consideration of subgiant branch stars in the isochrone fitting. A deduced distance of d⊙ = 29.1 kpc is compatible with the outer halo location of other low luminosity globular clusters.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are discussed.
Resumo:
To reliably determine the main physical parameters (masses and ages) of young stars, we must know their distances. While the average distance to nearby star-forming regions (<300 pc) is often known, the distances to individual stars are usually unknown. Individual distances to members of young moving groups can be derived from their radial velocities and proper motions using the convergent-point strategy. We investigate the kinematic properties of the Lupus moving group with the primary objective of deriving individual distances to all group members.
Resumo:
Be stars are known to be fast rotators. At high rotation rates a profound modification of the radiation field reaching the circumstellar environment is expected. The origin of this modification is the decrease of the effective gravity on stellar surface leading to the stellar geometrical flattening and the gravity darkening effect predicted by Von Zeipel. Making use of the radiative transfer code HDUST we discuss the consequences of such stellar rotation on the structure of Be star disks based on the Viscous Decretion Disk model. Observational predictions are also made, as SED, IR-excess and Hydrogen line profiles. The modified illumination of the circumstellar disk generates significant changes in these quantities. Ascertaining these changes is useful to set some of the fundamental parameters of the Be system and to unveil the role of stellar rotation over the stellar evolution.
Resumo:
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a ≥5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a ≥3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < –0.8 and/or α > 1.7. Likewise, we find that β < –0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a ≥3 M Jup planet beyond 10 AU, and β < –0.8 and/or α < –1.5. Likewise, β < –0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M Jup do not carve the central holes in these disks.
Resumo:
We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M ☉) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58$^{+21}_{-20}$ M Jup and 55$^{+20}_{-19}$ M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ☉ stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.
Resumo:
Intensive surveys have been conducted to unravel spatial patterns of benthic infauna communities. Although it has been recognized that benthic organisms are spatially structured along the horizontal and vertical dimensions of the sediment, little is known on how these two dimensions interact with each other. In this study we investigated the interdependence between the vertical and horizontal dimensions in structuring marine nematodes assemblages. We tested whether the similarity in nematode species composition along the horizontal dimension was dependent on the vertical layer of the sediment. To test this hypothesis, three-cm interval sediment samples (15 cm depth) were taken independently from two bedforms in three estuaries. Results indicated that assemblages living in the top layers are more abundant, species rich and less variable, in terms of species presence/absence and relative abundances, than assemblages living in the deeper layers. Results showed that redox potential explained the greatest amount (12%) of variability in species composition, more than depth or particle size. The fauna inhabiting the more oxygenated layers were more homogeneous across the horizontal scales than those from the reduced layers. In contrast to previous studies, which suggested that reduced layers are characterized by a specific set of tolerant species, the present study showed that species assemblages in the deeper layers are more causal (characterized mainly by vagrant species). The proposed mechanism is that at the superficial oxygenated layers, species have higher chances of being resuspended and displaced over longer distances by passive transport, while at the deeper anoxic layers they are restricted to active dispersal from the above and nearby sediments. Such restriction in the dispersal potential together with the unfavorable environmental conditions leads to randomness in the presence of species resulting in the high variability between assemblages along the horizontal dimension.
Resumo:
We apply Stochastic Dynamics method for a differential equations model, proposed by Marc Lipsitch and collaborators (Proc. R. Soc. Lond. B 260, 321, 1995), for which the transmission dynamics of parasites occurs from a parent to its offspring (vertical transmission), and by contact with infected host (horizontal transmission). Herpes, Hepatitis and AIDS are examples of diseases for which both horizontal and vertical transmission occur simultaneously during the virus spreading. Understanding the role of each type of transmission in the infection prevalence on a susceptible host population may provide some information about the factors that contribute for the eradication and/or control of those diseases. We present a pair mean-field approximation obtained from the master equation of the model. The pair approximation is formed by the differential equations of the susceptible and infected population densities and the differential equations of pairs that contribute to the former ones. In terms of the model parameters, we obtain the conditions that lead to the disease eradication, and set up the phase diagram based on the local stability analysis of fixed points. We also perform Monte Carlo simulations of the model on complete graphs and Erdös-Rényi graphs in order to investigate the influence of population size and neighborhood on the previous mean-field results; by this way, we also expect to evaluate the contribution of vertical and horizontal transmission on the elimination of parasite. Pair Approximation for a Model of Vertical and Horizontal Transmission of Parasites.