33 resultados para spatial and temporal patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary hyperparathyroidism associated with multiple endocrine neoplasia type I (hyperparathyroidism/multiple endocrine neoplasia type 1) differs in many aspects from sporadic hyperparathyroidism, which is the most frequently occurring form of hyperparathyroidism. Bone mineral density has frequently been studied in sporadic hyperparathyroidism but it has very rarely been examined in cases of hyperparathyroidism/multiple endocrine neoplasia type 1. Cortical bone mineral density in hyperparathyroidism/multiple endocrine neoplasia type 1 cases has only recently been examined, and early, severe and frequent bone mineral losses have been documented at this site. Early bone mineral losses are highly prevalent in the trabecular bone of patients with hyperparathyroidism/multiple endocrine neoplasia type 1. In summary, bone mineral disease in multiple endocrine neoplasia type 1related hyperparathyroidism is an early, frequent and severe disturbance, occurring in both the cortical and trabecular bones. In addition, renal complications secondary to sporadic hyperparathyroidism are often studied, but very little work has been done on this issue in hyperparathyroidism/multiple endocrine neoplasia type 1. It has been recently verified that early, frequent, and severe renal lesions occur in patients with hyperparathyroidism/multiple endocrine neoplasia type 1, which may lead to increased morbidity and mortality. In this article we review the few available studies on bone mineral and renal disturbances in the setting of hyperparathyroidism/multiple endocrine neoplasia type 1. We performed a meta-analysis of the available data on bone mineral and renal disease in cases of multiple endocrine neoplasia type 1-related hyperparathyroidism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > −10 °C and the specific conditions under which they can influence cloud glaciation need to be further evaluated so as to understand how evolutionary processes could have positively selected for INA.