36 resultados para molecular model
Resumo:
Abstract Background Patients under haemodialysis are considered at high risk to acquire hepatitis B virus (HBV) infection. Since few data are reported from Brazil, our aim was to assess the frequency and risk factors for HBV infection in haemodialysis patients from 22 Dialysis Centres from Santa Catarina State, south of Brazil. Methods This study includes 813 patients, 149 haemodialysis workers and 772 healthy controls matched by sex and age. Serum samples were assayed for HBV markers and viraemia was detected by nested PCR. HBV was genotyped by partial S gene sequencing. Univariate and multivariate statistical analyses with stepwise logistic regression analysis were carried out to analyse the relationship between HBV infection and the characteristics of patients and their Dialysis Units. Results Frequency of HBV infection was 10.0%, 2.7% and 2.7% among patients, haemodialysis workers and controls, respectively. Amidst patients, the most frequent HBV genotypes were A (30.6%), D (57.1%) and F (12.2%). Univariate analysis showed association between HBV infection and total time in haemodialysis, type of dialysis equipment, hygiene and sterilization of equipment, number of times reusing the dialysis lines and filters, number of patients per care-worker and current HCV infection. The logistic regression model showed that total time in haemodialysis, number of times of reusing the dialysis lines and filters, and number of patients per worker were significantly related to HBV infection. Conclusions Frequency of HBV infection among haemodialysis patients at Santa Catarina state is very high. The most frequent HBV genotypes were A, D and F. The risk for a patient to become HBV positive increase 1.47 times each month of haemodialysis; 1.96 times if the dialysis unit reuses the lines and filters ≥ 10 times compared with haemodialysis units which reuse < 10 times; 3.42 times if the number of patients per worker is more than five. Sequence similarity among the HBV S gene from isolates of different patients pointed out to nosocomial transmission.
Resumo:
Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.
Resumo:
Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.
Resumo:
Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.
Resumo:
Particle tracking of microbeads attached to the cytoskeleton (CSK) reveals an intermittent dynamic. The mean squared displacement (MSD) is subdiffusive for small Δt and superdiffusive for large Δt, which are associated with periods of traps and periods of jumps respectively. The analysis of the displacements has shown a non-Gaussian behavior, what is indicative of an active motion, classifying the cells as a far from equilibrium material. Using Langevin dynamics, we reconstruct the dynamic of the CSK. The model is based on the bundles of actin filaments that link themself with the bead RGD coating, trapping it in an harmonic potential. We consider a one- dimensional motion of a particle, neglecting inertial effects (over-damped Langevin dynamics). The resultant force is decomposed in friction force, elastic force and random force, which is used as white noise representing the effect due to molecular agitation. These description until now shows a static situation where the bead performed a random walk in an elastic potential. In order to modeling the active remodeling of the CSK, we vary the equilibrium position of the potential. Inserting a motion in the well center, we change the equilibrium position linearly with time with constant velocity. The result found exhibits a MSD versus time ’tau’ with three regimes. The first regime is when ‘tau’ < ‘tau IND 0’, where ‘tau IND 0’ is the relaxation time, representing the thermal motion. At this regime the particle can diffuse freely. The second regime is a plateau, ‘tau IND 0’ < ‘tau’ < ‘tau IND 1’, representing the particle caged in the potential. Here, ‘tau IND 1’ is a characteristic time that limit the confinement period. And the third regime, ‘tau’ > ‘tau IND 1’, is when the particles are in the superdiffusive behavior. This is where most of the experiments are performed, under 20 frames per second (FPS), thus there is no experimental evidence that support the first regime. We are currently performing experiments with high frequency, up to 100 FPS, attempting to visualize this diffusive behavior. Beside the first regime, our simple model can reproduce MSD curves similar to what has been found experimentally, which can be helpful to understanding CSK structure and properties.
Resumo:
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steadystate probability density of protocell compositions.