33 resultados para laserspectroscopy, laser systems, beryllium, nuclear charge radius, isotope shift measurement
Resumo:
Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.
Resumo:
The objectives of this study were to evaluate the effect of low-level laser irradiation (LLLI) on bovine oocyte and granulosa cells metabolism during in vitro maturation (IVM) and further embryo development. Cumulus-oocytes complexes (COCs) were subjected (experimental group) or not (control group) to irradiation with LLLI in a 633-nm wavelength and 1 J/cm2 fluency. The COCs were evaluated after 30 min, 8, 16, and 24 h of IVM. Cumulus cells were evaluated for cell cycle status, mitochondrial activity, and viability (flow cytometry). Oocytes were assessed for meiotic progression status (nuclear staining), cell cycle genes content [real-time polymerase chain reaction (PCR)], and signal transduction status (western blot). The COCs were also in vitro fertilized, and the cleavage and blastocyst rates were assessed. Comparisons among groups were statistically performed with 5% significance level. For cumulus cells, a significant increase in mitochondrial membrane potential and the number of cells progressing through the cycle could be observed. Significant increases on cyclin B and cyclin-dependent kinase (CDK4) levels were also observed. Concerning the oocytes, a significantly higher amount of total mitogen-activated protein kinase was found after 8 h of irradiation, followed by a decrease in all cell cycle genes transcripts, exception made for the CDK4. However, no differences were observed in meiotic progression or embryo production. In conclusion, LLLI is an efficient tool to modulate the granulosa cells and oocyte metabolism
Resumo:
The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.