35 resultados para intestinal obstruction
Resumo:
Objetivo: elaborar um manual com alimentos fonte de fibras para ser usado na composição da dieta líquida homogênea dos pacientes em pós-operatório no HRAC, de todas as idades, para reduzir ou prevenir a constipação intestinal. Métodos: o manual contém temática que esclarece sobre a importância das fibras alimentares, classificação, fontes, quantidades de uso, interação com outros nutrientes, forma de preparo, solubilidade, funções e problemas causados pelo excesso de ingestão. Consta também de uma lista de alimentos com quantidades de fibras presentes por 100gramas de cada alimento. Tais dados foram retirados da Tabela Brasileira de composição de Alimentos da UNICAMP e da Tabela Brasileira de Composição de Alimentos da USP. O manual foi elaborado pelas alunas do programa de Aprimoramento Profissional Fundap e será distribuído gratuitamente para todos os pacientes em pós-operatórios submetidos à dieta líquida homogênea. Além disto, o manual será disponibilizado nos sites www.centrinho.usp.br/manual e www.redeprofis.com.br. para consulta e cópias gratuitas. A arte e as ilustrações do manual foram feitas por aluno do Curso de Publicidade e Propaganda da USC. Resultados: O uso das fibras será orientado de forma preventiva para os pacientes que não apresentam constipação intestinal e de forma corretiva para os já constipados. Conclusões: A constipação intestinal é um problema de saúde pública no Brasil, principalmente entre as mulheres e tem seu quadro agravado quando estes indivíduos são submetidos a dietas líquidas e homogêneas, aonde os alimentos são liquidificados e coados e os resíduos (fibras) desprezados. Sendo assim, a composição desta dieta tem que ser enriquecida com fibras alimentares para prevenir ou corrigir a constipação intestinal.
Resumo:
Abstract Background Cell adhesion molecules (CAMs) are essential for maintaining tissue integrity by regulating intercellular and cell to extracellular matrix interactions. Cadherins and catenins are CAMs that are located on the cell membrane and are important for adherens junction (AJ) function. This study aims to verify if hypercholesterolemic diet (HCD) or bladder outlet obstruction (BOO) promotes structural bladder wall modifications specific to alterations in the expression of cadherins and catenins in detrusor muscle cells. Methods Forty-five 4-week-old female Wistar rats were divided into the following three groups: group 1 was a control group that was fed a normal diet (ND); group 2 was the BOO model and was fed a ND; and group 3 was a control group that was fed a HCD (1.25% cholesterol). Initially, serum cholesterol, LDL cholesterol and body weight were determined. Four weeks later, groups 1 and 3 underwent a sham operation; whereas group 2 underwent a partial BOO procedure that included a suture tied around the urethra. Six weeks later, all rats had their bladders removed, and previous exams were repeated. The expression levels of N-, P-, and E-cadherin, cadherin-11 and alpha-, beta- and gamma-catenins were evaluated by immunohistochemistry with a semiquantitative analysis. Results Wistar rats fed a HCD (group 3) exhibited a significant increase in LDL cholesterol levels (p=0.041) and body weight (p=0.017) when compared to both groups that were fed a normal diet in a ten-week period. We found higher β- and γ-catenin expression in groups 2 and 3 when compared to group 1 (p = 0.042 and p = 0.044, respectively). We also observed Cadherin-11 overexpression in group 3 when compared to groups 1 and 2 (p = 0.002). Conclusions A HCD in Wistar rats promoted, in addition to higher body weight gain and increased serum LDL cholesterol levels, overexpression of β- and γ-catenin in the detrusor muscle cells. Similar finding was observed in the BOO group. Higher Cadherin-11 expression was observed only in the HCD-treated rats. These findings may be associated with bladder dysfunctions that occur under such situations.
Resumo:
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Resumo:
The Euler obstruction of a function f can be viewed as a generalization of the Milnor number for functions defined on singular spaces. In this work, using the Euler obstruction of a function, we establish several Lê–Greuel type formulas for germs f:(X,0)→(C,0) and g:(X,0)→(C,0). We give applications when g is a generic linear form and when f and g have isolated singularities.
Resumo:
BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal