36 resultados para honey bee mite
Resumo:
The red palm mite Raoiella indica Hirst (Tenuipalpidae) was first reported in the New World in 2004, dispersing quickly and widely while adopting new plant species as hosts. Since then, it has caused severe damage in this region, especially to coconut (Cocos nucifera L.). It was first found in Brazil in 2009, in the northern Amazonian state of Roraima. In the present study, native and introduced plants were sampled between March 2010 and February 2011 in sites of the 15 Roraima municipalities, to estimate its distribution and the associated mite fauna. In addition, monthly samples were taken from a coconut plantation in Mucajai throughout the same period, for an initial appraisal of the levels R. indica could reach. It was found in 10 municipalities, on 19 plant species of four families. Six species are reported for the first time as hosts. Among the associated predators, 89.1% were Phytoseiidae, most commonly Amblyseius largoensis (Muma), Iphiseiodes zuluagai Denmark & Muma and Euseius concordis (Chant). The highest densities of R. indica, 1.5 and 0.35 mites/cm2 of leaflet (approx total of 331 and 77 mites/leaflet), were reached respectively in March 2010 and February 2011. The highest density of phytoseiids on coconut (0.009 mites/cm2 or about 2 mites/leaflet) was reached in November 2010. The average densities of R. indica recorded for Roraima were comparable to those reported for countries in which the mite is reportedly economically damaging. The dispersal of R. indica through the Amazon forest may result in damage to cultivated and native palms, and plants of other families, if the projected increase in both the frequency and the severity of drought events occurs. Parts of the Amazon have undergone periods of low rainfall, a condition that appears to favour the biology of this mite. Its eventual arrival to northeastern Brazil may result in heavy economic and ecological losses.
Resumo:
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.
Resumo:
Native bees are important providers of pollination services, but there are cumulative evidences of their decline. Global changes such as habitat losses, invasions of exotic species and climate change have been suggested as the main causes of the decline of pollinators. In this study, the influence of climate change on the distribution of 10 species of Brazilian bees was estimated with species distribution modelling. We used Maxent algorithm (maximum entropy) and two different scenarios, an optimistic and a pessimistic, to the years 2050 and 2080. We also evaluated the percentage reduction of species habitat based on the future scenarios of climate change through Geographic Information System (GIS). Results showed that the total area of suitable habitats decreased for all species but one under the different future scenarios. The greatest reductions in habitat area were found for Melipona bicolor bicolor and Melipona scutellaris, which occur predominantly in areas related originally to Atlantic Moist Forest. The species analysed have been reported to be pollinators of some regional crops and the consequence of their decrease for these crops needs further clarification. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Bee venom (BV) allergy is potentially dangerous for allergic individuals because a single bee sting may induce an anaphylactic reaction, eventually leading to death. Currently, venom immunotherapy (VIT) is the only treatment with long-lasting effect for this kind of allergy and its efficiency has been recognized worldwide. This therapy consists of subcutaneous injections of gradually increasing doses of the allergen. This causes patient lack of compliance due to a long time of treatment with a total of 30-80 injections administered over years. In this article we deal with the characterization of different MS-PLGA formulations containing BV proteins for VIT. The PLGA microspheres containing BV represent a strategy to replace the multiple injections, because they can control the solute release. Physical and biochemical methods were used to analyze and characterize their preparation. Microspheres with encapsulation efficiencies of 49-75% were obtained with a BV triphasic release profile. Among them, the MS-PLGA 34 kDa-COOH showed to be best for VIT because they presented a low initial burst (20%) and a slow BV release during lag phase. Furthermore, few conformational changes were observed in the released BV. Above all, the BV remained immunologically recognizable, which means that they could continuously stimulate the immune system. Those microspheres containing BV could replace sequential injections of traditional VIT with the remarkable advantage of reduced number of injections. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study aims to analyse the degree of completeness of world inventory of the mite family Phytoseiidae and the factors that might determine the process of species description. The world data set includes 2,122 valid species described from 1839 to 2010. Species accumulation curves were analysed. The effect of localisation (latitude ranges) and body size on the species description patterns over space and time was assessed. A low proportion of species seems remain to be described, but this trend could be explained by a critical reduction in the number of specialists dedicated to the study of those mites. In addition, this trend refers to the areas where phytoseiids have been well studied around the world, and it may change considerably if the study of these mites would be intensified in some areas. The number of newly described species is lower near the tropics, and their body size is also smaller. Differences in body size were noted between the three sub-families of Phytoseiidae, the highest mean body lengths of adult females being observed for Amblyseiinae, the most diverse family. In the future, collections would have certainly to take into consideration such conclusions for instance in using more adequate optical equipment especially for field collections. The decrease in the number of phytoseiid mite described was confirmed and the factors that could explain such a trend are discussed. Information for improving further inventories is provided and discussed, especially in relation to sampling localization and study methods.
Resumo:
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.