72 resultados para chorismate synthase inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today it is known that severe burns can be accompanied by the phenomenon of vasoplegic syndrome (VS), which is manifested by persistent and diffuse vasodilation, hypotension and low vascular resistance, resulting in circulatory and respiratory failure. The decrease in systemic vascular resistance observed in VS is associated with excessive production of nitric oxide (NO). In the last 2 decades, studies have reported promising results from the administration of an NO competitor, methylene blue (MB), which is an inhibitor of the soluble guanylate cyclase (sGC), in the treatment of refractory cases of vasoplegia. This medical hypothesis rationale is focused on the tripod of burns/vasoplegia catecholamine resistant/methylene blue. This article has 3 main objectives: 1) to study the guanylate cyclase inhibition by MB in burns; 2) to suggest MB as a viable, safe and useful co-adjuvant therapeutic tool of fluid resuscitation, and; 3) to suggest MB as burns hypotensive vasoplegia amine-resistant treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia causes a regulated decrease in body temperature (Tb), a response that has been aptly called anapyrexia, but the mechanisms involved are not completely understood. The roles played by nitric oxide (NO) and other neurotransmitters have been documented during hypoxia-induced anapyrexia, but no information exists with respect to hydrogen sulfide (H(2)S), a gaseous molecule endogenously produced by cystathionine beta-synthase (CBS). We tested the hypothesis that HA production is enhanced during hypoxia and that the gas acts in the anteroventral preoptic region (AVPO; the most important thermosensitive and thermointegrative region of the CNS) modulating hypoxia-induced anapyrexia. Thus, we assessed CBS and nitric oxide synthase (NOS) activities [by means of H2S and nitrite/nitrate (NO(x)) production, respectively] as well as cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) levels in the anteroventral third ventricle region (AV3V; where the AVPO is located) during normoxia and hypoxia. Furthermore, we evaluated the effects of pharmacological modifiers of the H2S pathway given i.c.v. or intra-AVPO. I.c.v. or intra-AVPO microinjection of CBS inhibitor caused no change in Tb under normoxia but significantly attenuated hypoxia-induced anapyrexia. During hypoxia there were concurrent increases in H2S production, which could be prevented by CBS inhibitor, indicating the endogenous source of the gas. cAMP concentration, but not cGMP and NOR, correlated with CBS activity. CBS inhibition increased NOS activity, whereas H2S donor decreased NO. production. In conclusion, hypoxia activates H2S endogenous production through the CBS-H(2)S pathway in the AVPO, having a cryogenic effect. Moreover, the present data are consistent with the notion that the two gaseous molecules, H(2)S and NO, play a key role in mediating the drop in Tb caused by hypoxia and that a fine-balanced interplay between NOS-NO and CBS-H(2)S pathways takes place in the AVPO of rats exposed to hypoxia. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C-1026 A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman (R) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C-1026 A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6 h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1 alpha) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitroglycerin (GIN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GIN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GIN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GIN pharmacological action at pharmacologically relevant doses. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenic mechanisms of thromboangiitis obliterans (TAO) are not entirely known and the imbalance of matrix metalloproteinases (MMPs) plays a role in vascular diseases. We evaluated the MMP-2 and MMP-9 circulating levels and their endogenous tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in TAO patients with clinical manifestations. The study included 20 TAO patients (n = 10 female, n = 10 male) aged 38-59 years under clinical follow-up. The patients were classified into two groups: (1) TAO former smokers (n = 11) and (2) TAO active smokers (n = 9); the control group included normal volunteer non-smokers (n = 10) and active smokers without peripheral artery disease (n = 10). Patient plasma samples were used to analyze MMP-2 and MMP-9 levels using zymography, and TIMP-1 and TIMP-2 concentrations were determined by enzyme-linked immunosorbent assays. The analysis of MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios (which were used as indices of net MMP-2 and MMP-9 activity, respectively) showed significantly higher MMP-9/TIMP-1 ratios in TAO patients (p < 0.05). We found no significant differences in MMP-2/TIMP-2 ratios (p > 0.05). We found higher MMP-9 levels and decreased levels of TIMP-1 in the TAO groups (active smokers and former smokers), especially in active smokers compared with the other groups (all p < 0.05). MMP-2 and TIMP-2 were not significantly different in patients with TAO as compared to the control group (p > 0.05). In conclusion, our results showed increased MMP-9 and reduced TIMP-1 activity in TAO patients, especially in active smokers compared with non-TAO patients. These data suggest that smoke compounds could activate MMP-9 production or inhibit TIMP-1 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatraea saccharalis, is a major sugarcane pest, causing damage to the stalks of sugarcane plants. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seeds and was tested for its insect growth regulatory effect. ApTI showed a dose-dependent effect on average larval weight and survival. 0.1% ApTI produced approximately 67% and 50% decreases in weight and survival larval, respectively. The results from dietary utilization experiments with D. saccharalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food, and an increase in approximate digestibility and metabolic cost. The level of trypsin was significantly decreased (ca. 55%) in the midgut of larvae reared on a diet containing 0.05% ApTI and the trypsin activity in ApTI-fed larvae demonstrated sensitivity to ApTI. The action of ApTI on the development of D. saccharalis larvae shows that this protein may have great toxic potential. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform beta II (PKC beta II) in disrupting PQC. We show that active PKC beta II directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKC beta II, using a selective PKC beta II peptide inhibitor (beta IIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKC beta II increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, beta IIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKC beta II activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKC beta II as a novel inhibitor of proteasomal function. PQC disruption by increased PKC beta II activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKC beta II inhibition may benefit patients with heart failure. (218 words)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemopreventive effects of tributyrin (TB) and vitamin A (VA), alone or in combination, were investigated during the promotion phase of rat hepatocarcinogenesis. Compared to diethylnitrosamine control rats. TB and TB+VA-treated rats, but not VA-treated rats, presented a lower incidence and mean number of hepatocyte nodules and a smaller size of persistent preneoplastic lesions (pPNLs). In addition, TB and TB+VA-treated rats exhibited a higher apoptotic body index in pPNL and remodeling PNL, whereas VA-treated rats presented only a higher apoptotic body index in remodeling PNL. None of the treatments inhibited cell proliferation in PNL TB and TB+VA-treated rats, but not VA-treated rats, exhibited higher levels of H3K9 acetylation and p21 protein expression. TB and VA-treated rats exhibited increased hepatic concentrations of butyric acid and retinoids, respectively. Compared to normal rats, diethylnitrosamine control animals exhibited lower retinyl palmitate hepatic concentrations. All groups had similar expression levels and exhibited similar unmethylated CRBP-I promoter region in microdissected pPNL, indicating that epigenetic silencing of this gene was not involved in alteration of retinol metabolism in early hepatocarcinogenesis. Data support the effectiveness of TB as a dietary histone deacetylase inhibitor during the promotion phase of hepatocarcinogenesis, which should be considered for chemoprevention combination strategies. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(NO)-N-center dot is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox-/-) or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-gamma and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (NO)-N-center dot in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lodenafil carbonate is a new phosphodiesterase Type 5 (PDE5) inhibitor used in treatment of erectile dysfunction. Objective: The present study was conducted to evaluate the safety, tolerability, and pharmacokinetics of lodenafil carbonate after administering ascending (1 - 100 mg) single oral doses to healthy male volunteers (n = 33). Methods: The study was an open-label, dose-escalation, Phase I clinical trial involving the administration of single oral doses of lodenafil carbonate. Lodenafil carbonate was administered sequentially, escalating in single doses of 1 mg - 100 mg with a washout period of at least 1 week between each dose. The progression to the next dose was allowed after clinical and laboratory exams, Ambulatory Monitoring of Arterial Pressure (AMAP) without relevant clinical modifications and adverse events without clinical relevancy. Blood samples were collected at pre-dose, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 10, 12, 14, 16, 20 and 24 h post-dosing. Plasma samples for measurement of lodenafil carbonate and lodenafil were analyzed by liquid chromatography coupled to tandem mass spectrometry. Results: No serious adverse events were observed, and none of the subjects discontinued the study due to intolerance. The AMAP measurements, clinical and laboratory exams and ECG revealed no significant changes even at higher doses. Lodenafil carbonate was not detected in any samples, indicating that it acts as a prodrug. The mean lodenafil pharmacokinetic parameters for t(max) and t(1/2) were 1.6 (+/- 0.4) h and 3.3 (+/- 1.1) h, respectively. This study demonstrated that lodenafil carbonate was well tolerated and showed a good safety profile in healthy male volunteers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: NF-kappa B is an essential transcription factor strongly associated to inflammatory response in chronic rhinosinusitis with nasal polyps (CRSwNP). DHMEQ is a NF-kappa B inhibitor that has been previously described with a greatpotential indecreasing inflammation in diseases other than CRSwNP. The aim of study isto evaluate the ability of DHMEQ to reducethe inflammatory recruiters on CRSwNP and to compare its anti-inflammatory profile as a single-agent or in association with fluticasone propionate (FP). Methods: nasal polyp fibroblasts were cultured in TNF-alpha enriched media. Cells were submitted to three different concentrations (1, 10 and 100nM) of either FP, DHMEQ or both. Inflammatory response was accessed by VCAM-1, ICAM-1 and RANTES expression (by RTQ-PCR) and protein levels by ELISA. Nuclear translocation of NF-kappa B was also evaluated. Results: both FP and DHMEQ inhibited inflammatory recruiters' production and NF-kappa B nuclear translocation. Interestingly, the anti-inflammatory effect from the association steroids plus DHMEQ was more intense than of each drug in separate. Conclusion: DHMEQ seems efficient in modulating the inflammatory process in CRSwNP. The synergic anti-inflammatory effect of DHMEQ and steroids may be a promising strategy to be explored, particularly in the setting of steroid-resistant NP. Copyright (c) 2012 S. Karger AG, Basel