32 resultados para anesthetic technique, general: continuous infusion, venous
Resumo:
Background: Walking with high-heeled shoes is a common cause of venous complaints such as pain, fatigue, and heavy-feeling legs. The aim of the study was to clarify the influence of high-heeled shoes on the venous return and test the hypothesis that women wearing different styles of high-heeled shoes present an impaired venous return when compared with their values when they are barefoot. Methods: Thirty asymptomatic women (mean age, 26.4 years) wearing appropriately sized shoes were evaluated by air plethysmography (APG), a test that measures changes in air volume on a cuff placed on the calf, while they performed orthostatic flexion and extension foot movements and altered standing up and lying down. The test was repeated in four situations: barefoot (0 cm), medium heels (3.5 cm), stiletto high heels (7 cm), and platform high heels (7 cm). The APG values of venous filling index (VFI), ejection fraction (EF), and residual volume fraction (RVF) were divided into four groups according to heel height and compared by repeated-measures analysis of variance. Results: RVF was increased in the groups wearing high heels (stiletto and platform) compared with the barefoot group (P < .05). RVF was increased in the medium-heel group (3.5 cm) compared with the barefoot group (P < .05), and despite the lack of statistical significance, the medium-heel group showed lower values of RVF compared with the two high-heel groups. The EF parameter followed the opposite tendency, showing higher values for the barefoot group compared with the other three groups (P < .05). Values for VFI were similar in the three situations evaluated. Conclusions: High heels reduce muscle pump function, as demonstrated by reduced EF and increased RVF values. The continuous use of high heels tends to provoke venous hypertension in the lower limbs and may represent a causal factor of venous disease symptoms. (J Vasc Surg 2012;56:1039-44.)
Resumo:
DKA is a severe metabolic derangement characterized by dehydration, loss of electrolytes, hyperglycemia, hyperketonemia, acidosis and progressive loss of consciousness that results from severe insulin deficiency combined with the effects of increased levels of counterregulatory hormones (catecholamines, glucagon, cortisol, growth hormone). The biochemical criteria for diagnosis are: blood glucose > 200 mg/dl, venous pH <7.3 or bicarbonate <15 mEq/L, ketonemia >3 mmol/L and presence of ketonuria. A patient with DKA must be managed in an emergency ward by an experienced staff or in an intensive care unit (ICU), in order to provide an intensive monitoring of the vital and neurological signs, and of the patient's clinical and biochemical response to treatment. DKA treatment guidelines include: restoration of circulating volume and electrolyte replacement; correction of insulin deficiency aiming at the resolution of metabolic acidosis and ketosis; reduction of risk of cerebral edema; avoidance of other complications of therapy (hypoglycemia, hypokalemia, hyperkalemia, hyperchloremic acidosis); identification and treatment of precipitating events. In Brazil, there are few pediatric ICU beds in public hospitals, so an alternative protocol was designed to abbreviate the time on intravenous infusion lines in order to facilitate DKA management in general emergency wards. The main differences between this protocol and the international guidelines are: intravenous fluid will be stopped when oral fluids are well tolerated and total deficit will be replaced orally; if potassium analysis still indicate need for replacement, it will be given orally; subcutaneous rapid-acting insulin analog is administered at 0.15 U/kg dose every 2-3 hours until resolution of metabolic acidosis; approximately 12 hours after treatment initiation, intermediate-acting (NPH) insulin is initiated at the dose of 0.6-1 U/kg/day, and it will be lowered to 0.4-0.7 U/kg/day at discharge from hospital.