32 resultados para Vegetative Compatibility Groups
Resumo:
OBJECTIVE: To review the psychometric properties of the Beck Depression Inventory-II (BDI-II) as a self-report measure of depression in a variety of settings and populations. METHODS: Relevant studies of the BDI-II were retrieved through a search of electronic databases, a hand search, and contact with authors. Retained studies (k = 118) were allocated into three groups: non-clinical, psychiatric/institutionalized, and medical samples. RESULTS: The internal consistency was described as around 0.9 and the retest reliability ranged from 0.73 to 0.96. The correlation between BDI-II and the Beck Depression Inventory (BDI-I) was high and substantial overlap with measures of depression and anxiety was reported. The criterion-based validity showed good sensitivity and specificity for detecting depression in comparison to the adopted gold standard. However, the cutoff score to screen for depression varied according to the type of sample. Factor analysis showed a robust dimension of general depression composed by two constructs: cognitive-affective and somatic-vegetative. CONCLUSIONS: The BDI-II is a relevant psychometric instrument, showing high reliability, capacity to discriminate between depressed and non-depressed subjects, and improved concurrent, content, and structural validity. Based on available psychometric evidence, the BDI-II can be viewed as a cost-effective questionnaire for measuring the severity of depression, with broad applicability for research and clinical practice worldwide.
Resumo:
Lyotropic liquid crystals exhibiting nematic phases were obtained from the mixtures potassium laurate/alkali sulfate salts (M2SO4)/1-undecanol (UndeOH)/water and sodium dodecyl sulfate (SDS)/M2SO4/1-dodecanol (DDeOH)/water, where M2SO4 represents the alkali sulfate salts being Li2SO4, Na2SO4, K2SO4, Rb2SO4 or Cs2SO4. The birefringences measurements were performed via laser conoscopy. Our results indicated that cosmotropic and chaotropic behaviors of both ions and head groups are very important to obtain lyotropic biaxial nematic phase. To obtain the biaxial nematic phase, surfactant head group and ion present in lyotropic mixture have relatively opposite behavior, e.g. one more cosmotropic (more chaotropic) other less cosmotropic (less chaotropic) or vice versa.