74 resultados para Vascular smooth muscle.
Resumo:
Background/Aims: The effects of cigarette smoke (CS) on cyclosporine (CsA)-induced nephrotoxicity are poorly studied. This study aims to assess the effects of previous exposure to CS on CsA nephrotoxicity. Methods: Rats were either exposed to CS or sham (S) procedures for 10 min twice a day for 20 weeks. From the 16th to the 20th week, they received a low-salt diet. Beginning with the 17th week, they were given 2.5 mg/day CsA or vehicle (VH) for 3 weeks. The final groups were VH/CS, CsA/CS, VH/S, and CsA/S. On day 141, glomerular filtration rate (GFR), renal blood flow (RBF), renal vascular resistance (RVR), tubulointerstitial fibrosis, and CsA blood levels were measured and immunohistochemistry was analyzed for renal alpha-smooth muscle actin (SMA), nitrotyrosine, and vimentin. Results: CsA decrease in GFR was enhanced by CS exposure. CsA associated with CS induced higher periglomerular alpha-SMA and renal nitrotyrosine expression. CsA decreased RBF, but increased RVR, tubulointerstitial fibrosis, and alpha-SMA and renal vimentin expression. These changes and the CsA blood levels were not affected by CS exposure. Conclusion: CS aggravated the CsA-induced impairment of GFR and CS associated with CsA caused the development of periglomerular structural lesions and oxidative stress in a rat model of CsA nephrotoxicity. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
The microvascularization of the collared peccary (Tayassu tajacu) placenta was studied by vascular casts and immunolocalization of alpha-smooth muscle actin and vimentin, to identify the three-dimensional organization and vascular flow interrelation in the microvasculature between the maternal and fetal compartments of the placentae. The immunolocalization of vimentin in the vascular endothelium and in the smooth muscle cells of blood vessels showed indented capillaries along the uterine epithelium and the trophoblast at the sides of complementary maternal and fetal microfolds, or rugae. This confers the three-dimensional structure observed in vascular casts. On the maternal side, casts demonstrated uterine folds coated by with primary and secondary ridges, and by areolae dispersed between these ridges. The arteriole runs through the center/middle of ridges, branching at the top into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base of the bulbous protrusions, the fetal venules arise. The blood vessel orientation in the materno-fetal interface of the placentae of collared peccaries suggests a blood flow pattern of the type countercurrent to crosscurrent. The same pattern has been reported in domestic swine demonstrating that, even after 38 million years, the Tayassuidae and Suidae families exhibit similar placental morphology, which is here characterized at the microvascular level.
Resumo:
Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive A beta 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.
Resumo:
Background. Chronic allograft vasculopathy (CAV) is an important cause of graft loss. Considering the immune inflammatory events involved in the development of CAV, therapeutic approaches to target this process are of relevance. Human amniotic fluid derived stem cells (hAFSCs), a class of fetal, pluripotent stem cells with intermediate characteristics between embryonic and adult stem cells, display immunomodulatory properties. hAFSCs express mesenchymal and embryonic markers, show high proliferation rates; however, they do not induce tumor formation, and their use does not raise ethical issues. Thus, we sought to investigate the effect of hAFSC on CAV in a model of aorta transplantation. Methods. Orthotopic aorta transplantation was performed using Fisher (F344) rats as donors and Lewis rats as recipients. Rats were divided into three groups: syngeneic (SYNG), untreated F344 receiving aorta from F344 (n = 8); allogeneic (ALLO), Lewis rats receiving allogeneic aorta from F344 (n = 8); and ALLO + hAFSC, ALLO rats treated with hAFSC (10(6) cells; n = 8). Histological analysis and immunohistochemistry were performed 30 days posttransplantation. Results. The ALLO group developed a robust aortic neointimal formation (208.7 +/- 25.4 gm) accompanied by a significant high number of ED1(+) (4845 +/- 841 cells/mm(2)) and CD43(+) cells (4064 +/- 563 cells/mm(2)), and enhanced expression of a-smooth muscle actin in the neointima (25 +/- 6%). Treatment with hAFSC diminished neointimal thickness (180.7 +/- 23.7 mu m) and induced a significant decrease of ED1(+) (1100 +/- 276 cells/mm(2)), CD43(+) cells (1080 +/- 309 cells/mu m(2)), and alpha-smooth muscle actin expression 8 +/- 3% in the neointima. Conclusions. These preliminary results showed that hAFSC suppressed inflammation and myofibroblast migration to the intima, which may contribute to ameliorate vascular changes in CAV.
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF). UCs were analysed stereologically and by immunohistochemistry to localize isoprostane and endothelin receptors. The cords of mice from NF chambers were smaller in volume due to loss of mucoid connective tissue and decrease in volume of collagen. These structural changes and in umbilical vessels were associated with greater volumes of regions immunostained for isoprostane, ETAR and ETBR. Findings indicate that the adverse effects of PM on birth weight may be mediated in part by alterations in UC structure or imbalances in the endogenous regulators of vascular tone and oxidative stress. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or omega-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-alpha) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-alpha concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-alpha as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.
Resumo:
Background: Smoking is the most relevant environmental factor that affects the development of aortic aneurysm. Smokers have elevated levels of elastase activity in the arterial wall, which leads to weakening of the aorta. The aim of this study was to verify whether cigarette smoke exposure itself is capable of altering the aortic wall. Methods: Forty-eight Wistar rats were divided into 2-, 4-, and 6-month experimental periods and into 2 groups: smokers (submitted to smoke exposure at a rate of 40 cigarettes/day) and nonsmokers. At the end of the experimental periods, the aortas were removed and crosssectioned to obtain histologic specimens for light microscopic and morphometric analyses. The remaining longitudinal segments were stretched to rupture and mechanical parameters were determined. Results: A degenerative process (i.e., a reduction in elastic fibers, the loss of lamellar arrangement, and a reduction of smooth muscle cells) was observed, and this effect was proportional in intensity to the period of tobacco exposure. We observed a progressive reduction in the yield point of the thoracic aorta over time (P < 0.05). There was a decrease in stiffness (P < 0.05) and in failure load (P < 0.05) at 6 months in the abdominal aorta of rats in the smoking group. Conclusions: Chronic exposure to tobacco smoke can affect the mechanical properties of the aorta and can also provoke substantial structural changes of the arterial wall
Resumo:
Objective: To analyze the myometrial thickness of rats subjected to creatine (Cr) ingestion. Study design: A total of 14 rats was equally divided into the control group (ConGr) receiving 1 ml potable water and the creatine group (CrGr) subjected to the ingestion of 1.6 g/kg Cr diluted in 1 ml potable water. At the end of 8 weeks, the animals were anesthetized (xylazine and ketamine) and sacrificed, the uteri and ovaries stained with hematoxylin and eosin, the thickness of both the myometrium and the epithelium measured and the follicles counted. Results: Analysis revealed a significant increase in thickness of the myometrium in the CrGr (272.26 +/- 66.71 mu m) contrasted with that from the ConGr (160.76 +/- 35.65 mu m), CrGr > ConGr (p < 0001). Conclusion: Our data suggest that Cr changed myometrial morphology in rats by enhancing myometrial thickness, but its action mechanism in the smooth muscle is still unclear.
Resumo:
Background/Purpose: The mechanisms of increased collagen production and liver parenchyma fibrosis are poorly understood. These phenomena are observed mainly in children with biliary obstruction (BO), and in a great number of patients, the evolution to biliary cirrhosis and hepatic failure leads to the need for liver transplantation before adolescence. However, pediatric liver transplantation presents with biliary complications in 20% to 30% of cases in the postoperative period. Intra-or extrahepatic stenosis of bile ducts is frequent and may lead to secondary biliary cirrhosis and the need for retransplantation. It is unknown whether biliary stenosis involving isolated segments or lobes may affect the adjacent nonobstructed lobes by paracrine or endocrine means, leading to fibrosis in this parenchyma. Therefore, the present study aimed to create an experimental model of selective biliary duct ligation in young animals with a subsequent evaluation of the histologic and molecular alterations in liver parenchyma of the obstructed and nonobstructed lobes. Methods: After a pilot study to standardize the surgical procedures, weaning rats underwent ligation of the bile ducts of the median, left lateral, and caudate liver lobes. The bile duct of the right lateral lobe was kept intact. To avoid intrahepatic biliary duct collaterals neoformation, the parenchymal connection between the right lateral and median lobes was clamped. The animals were divided into groups according to the time of death: 1, 2, 3, 4, and 8 weeks after surgical procedure. After death, the median and left lateral lobes (with BO) and the right lateral lobe (without BO [NBO]) were harvested separately. A group of 8 healthy nonoperated on animals served as controls. Liver tissues were subjected to histologic evaluation and quantification of the ductular proliferation and of the portal fibrosis. The expressions of smooth muscle alpha-actin (alpha-SMA), desmin, and transforming growth factor beta 1 genes were studied by molecular analyses (semiquantitative reverse transcriptase-polymerase chain reaction and real-time polymerase chain reaction, a quantitative method). Results: Histologic analyses revealed the occurrence of ductular proliferation and collagen formation in the portal spaces of both BO and NBO lobes. These phenomena were observed later in NBO than BO. Bile duct density significantly increased 1 week after duct ligation; it decreased after 2 and 3 weeks and then increased again after 4 and 8 weeks in both BO and NBO lobes. The portal space collagen area increased after 2 weeks in both BO and NBO lobes. After 3 weeks, collagen deposition in BO was even higher, and in NBO, the collagen area started decreasing after 2 weeks. Molecular analyses revealed increased expression of the alpha-SMA gene in both BO and NBO lobes. The semiquantitative and quantitative methods showed concordant results. Conclusions: The ligation of a duct responsible for biliary drainage of the liver lobe promoted alterations in the parenchyma and in the adjacent nonobstructed parenchyma by paracrine and/or endocrine means. This was supported by histologic findings and increased expression of alpha-SMA, a protein related to hepatic fibrogenesis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
AIM: To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS: The study examined the distribution of the P2X(2) receptor (P2X(2)R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X(2)R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm(2)) and area profile (mu m(2)) of P2X(2)R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS: In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X(2)R, nNOS, ChAT and CaIR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X(2)R-IR was observed to co-localize 100% with that for nNOS, ChAT and CaIR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm(2)) of P2X(2)R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CaIR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the cell body profile area (mu m(2)) of nNOS-IR, ChAT-IR and CaIR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls. Staining for NADH diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NADH-diaphorase positive neurons in the nnyenteric ganglia revealed an overall similarity between the two groups. CONCLUSION: We demonstrate increases in P2X(2)R expression and alterations in nNOS, ChAT and CaIR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls. (c) 2012 Baishideng. All rights reserved.
Resumo:
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na+/H+ exchanger isoform), after the acid load induced by NH4Cl, and on the cytosolic free calcium concentration ([Ca2+](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15+/-0.008 and the basal pHirr was 0.195+/-0.012 pH units/min (number of tubules/number of tubular areas = 16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10(-12) M) increases the pHirr to approximately 59% of control value, and ALDO (10(-6)M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10(-6) M) or BAPTA (5 x 10(-5) M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca2+](i) was 104+/-3 nM (15), and ALDO (10(-12) or 10(-6) M) increased the basal [Ca2+](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca2+](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca2+](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations. (C) 2011 Elsevier Ltd. All rights reserved.