32 resultados para Uterine involution


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In beef cattle, the ability to conceive has been associated positively with size of the preovulatory follicle (POF). Proestrus estradiol and subsequent progesterone concentrations can regulate the endometrium to affect receptivity and fertility. The aim of the present study was to verify the effect of the size of the POF on luteal and endometrial gene expression during subsequent early diestrus in beef cattle. Eighty-three multiparous, nonlactating, presynchronized Nelore cows received a progesterone-releasing device and estradiol benzoate on Day–10 (D 10). Animals received cloprostenol (large follicle-large CL group; LF-LCL; N ¼ 42) or not (small follicle-small CL group; SF-SCL; N ¼ 41) on D 10. Progesterone devices were withdrawn and cloprostenol administered 42 to 60 hours (LF-LCL) or 30 to 36 hours (SF-SCL) before GnRH treatment (D0). Tissues were collected at slaughter on D7. The LF-LCL group had larger (P < 0.0001) POF (13.24 0.33 mm vs. 10.76 0.29 mm), greater (P < 0.0007) estradiol concentrations on D0 (2.94 0.28 pg/mL vs. 1.27 0.20 pg/mL), and greater (P < 0.01) progesterone concentrations on D7 (3.71 0.25 ng/mL vs. 2.62 0.26 ng/mL) compared with the SF-SCL group. Luteal gene expression of vascular endothelial growth factor A, kinase insert domain receptor, fms-related tyrosine kinase 1, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid deltaisomerase 7 was similar between groups. Endometrial gene expression of oxytocin receptor and peptidase inhibitor 3, skin-derived was reduced, and estrogen receptor alpha 2, aldo-keto reductase family 1, member C4, and lipoprotein lipase expression was increased in LF-LCL versus SF-SCL. Results support the hypothesis that the size of the POF alters the periovulatory endocrine milieu (i.e., proestrus estradiol and diestrus progesterone concentrations) and acts on the uterus to alter endometrial gene expression. It is proposed that the uterine environment and receptivity might also be modulated. Additionally, it is suggested that increased progesterone secretion of cows ovulating larger follicles is likely due to increased CL size rather than increased luteal expression of steroidogenic genes.