43 resultados para UV-Vis-NIR spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of the properties of materials at the molecular level is pursued for many applications, especially those associated with nanostructures. In this paper, we show that the coordination compound [Ni(dmit)(2)], where (dmit) is the 1,3-dithiole-2-thione-4,5-dithiolate ligand, can induce doping of poly(2-methoxyaniline) (POMA) in molecularly ordered Langmuir and Langmuir-Blodgett (LB) films. Doping was associated with interactions between the components and the compression of the Langmuir film at the air-water interface, according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Taking these results together with in situ UV-Vis absorption measurements, we could identify the molecular groups involved in the interaction, including the way they were reoriented upon film compression. The Langmuir films were sufficiently stable to be transferred as Y-type LB films, while the hybrid POMA/[Ni(dmit)(2)] films remain doped in the solid state. As expected, the molecular charges affected the film morphology, as observed from combined atomic and electric force microscopy measurements. In summary, with adequate spectroscopy and microscopy tools we characterized molecular-level interactions, which may allow one to design molecular electronic devices with controlled electrical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud point extraction (CPE) was employed for separation and preconcentration prior to the determination of nickel by graphite furnace atomic absorption spectrometry (GFAAS), flame atomic absorption spectrometry (FAAS) or UV-Vis spectrophotometry. Di-2-pyridyl ketone salicyloylhydrazone (DPKSH) was used for the first time as a complexing agent in CPE. The nickel complex was extracted from the aqueous phase using the Triton X-114 surfactant. Under optimized conditions, limits of detection obtained with GFAAS, FAAS and UV-Vis spectrophotometry were 0.14, 0.76 and 1.5 mu g L-1, respectively. The extraction was quantitative and the enrichment factor was estimated to be 27. The method was applied to natural waters, hemodialysis concentrates, urine and honey samples. Accuracy was evaluated by analysis of the NIST 1643e Water standard reference material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (alpha-Ag2WO4) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these alpha-Ag2WO4 microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that alpha-Ag2WO4 microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L-3-edge showed distorted octahedral [WO6] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the alpha-Ag2WO4 microcrystals grow by aggregation and the Ostwald ripening process. PL properties of alpha-Ag2WO4 microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like alpha-Ag2WO4 microcrystals prepared by the SC method exhibited a major PL emission intensity relative to alpha-Ag2WO4 microcrystals prepared by the CP and CH methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (525 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanincoumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyaninco-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cationco-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new diruthenium(II,III) complex, of formula [Ru2Cl(ket)(4)], Ruket, containing the non-steroidal anti-inflammatory drug ketoprofen was synthesized and mainly characterized by electrospray ionization mass spectrometry (ESI-MS), UV-Vis-IR electronic spectroscopy and FTIR and Raman vibrational spectroscopies. The four drug-carboxylato bridging ligands stabilize a Ru-2(II,III) mixed valent core in a paddlewheel type structure as confirmed by ESI mass spectra, electronic and vibrational spectroscopies and magnetic measurements. Ruket and the analogous compounds containing ibuprofen, Ruibp, and naproxen, Runpx, were tested for the biological effects in the human colon carcinoma cells HT-29 and Caco-2 expressing high and low levels of COX-2 respectively. All compounds only weakly affected the proliferation of the colorectal cancer cells HT-29 and Caco-2, and similarly only partially inhibited the production/activity of MMP-2 and MMP-9 by HT-29 cells, suggesting that COX-2 inhibition by these drugs can only partially be involved in the pharmacological effects of these derivatives. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO2 at pH 4.8. The adsorption fit very well to a Brunauer-Emmett-Teller isotherm equation with a monolayer coverage of 68.15 mg(CA) g(TiO2)(-1) and saturation coverage of 195.4 mg(CA) g(TiO2)(-1). A strong adsorption of caffeic acid was verified on TiO2 for the dry solid obtained from the mixture. The Raman and IR spectroscopies revealed that the adsorption should occur through the interaction of the diphenol oxygens with contribution of CC double bond of the acrylic group, however, the carboxylic acid group did not have participation in the adsorption. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC-DAD/ESI-MS/MS. Low-molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium-toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium-toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 ºC was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H2 yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of external agents on proteins function and structure is essential to elucidate the unfolding pathways and self-assemble properties. The knowledge of the protein amyloid fibril formation process is important due to the fields that this subjected is related, in particular for the neurodegenerative disorders. In the present work we studied the influence of both urea and 2,2,2-Trifluoroethanol (TFE) and temperature on the structure and proteinprotein interactions of Bovine Serum Albumin (BSA), by means of UV-Vis spectroscopy, static fluorescence and small angle X-ray scattering technique. The experiments were performed in samples composed by 10 and 3 mg/ml of BSA at pH 5.8, near the protein pI. First, Thioflavin-T fluorescence measurements indicated that urea, in the absence of TFE, was able to increase the amyloid fibril formation of BSA at 45oC and increasing the urea concentration the rate of amyloid fibril formation also increases. Concerning the presence of TFE, SAXS data suggest that BSA tridimensional structure is not altered by the presence of TFE 5% and 10% v/v in all studied protein concentrations. Interestingly, the presence of TFE on the urea-containing BSA also increases the rate of amyloid fibril formation, as compared to the TFE-free system, indicating that TFE can catalyze the amyloid-fibril formation. The presence of TFE 20% v/v, however, induces the formation of aggregates, but at this time we were not able to infer if such aggregates are amyloidlike or amorphous. Taking together, the results give support to infer that BSA can for fibrils in the presence of urea at 45oC and TFE can act as a stabilizer or as a denaturant agent for BSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.