34 resultados para SEQUENCING REVEALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of Microsporum gypseum was conducted in soil samples in different geographical regions of Brazil. The isolation of dermatophyte from soil samples was performed by hair baiting technique and the species were identified by morphology studies. We analyzed 692 soil samples and the recuperating rate was 19.2%. The activities of keratinase and elastase were quantitatively performed in 138 samples. The sequencing of the ITS region of rDNA was performed in representatives samples. M. gypseum isolates showed significant quantitative differences in the expression of both keratinase and elastase, but no significant correlation was observed between these enzymes. The sequencing of the representative samples revealed the presence of two teleomorphic species of M. gypseum (Arthroderma gypseum and A. incurvatum). The enzymatic activities may play an important role in the pathogenicity and a probable adaptation of this fungus to the animal parasitism. Using the phenotypical and molecular analysis, the Microsporum identification and their teleomorphic states will provide a useful and reliable identification system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. Results Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. Conclusions This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. METHODS: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. RESULTS: CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74-624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85-3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. DISCUSSION: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. CONCLUSIONS: Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study