37 resultados para Room-temperature ferromagnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 mu g/mL in PMs to 293.43 mu g/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peanut samples were irradiated (0.0, 5.2, 7.2 or 10.0 kGy), stored for a year (room temperature) and examined every three months. Mycotoxic fungi (MF) were detected in non-irradiated blanched peanuts. A dose of 5.2 kGy was found suitable to prevent MF growth in blanched samples. No MF was detected in in-shell peanuts, with or without irradiation. The colors of the control in-shell and blanched samples were, respectively, 44.72 and 60.21 (L *); 25.20 and 20.38 (Chroma); 53.05 and 86.46 (degrees Hue). The water activities (Aw) were 0.673 and 0.425. The corresponding fatty acids were 13.33% and 12.14% (C16:0), 44.94% and 44.92% (C18:1,omega 9) and 37.10% and 37.63% (C18: 2,omega 6). The total phenolics (TP) were 4.62 and 2.52 mg GAE/g, with antioxidant activities (AA) of 16.97 and 10.36 mu mol TEAC/g. Storage time negatively correlated with Aw (in-shell peanuts) or L *, linoleic acid, TP and AA (in-shell and blanched peanuts) but positively correlated with Aw (blanched peanuts), and with oleic acid (in-shell and blanched peanuts). Irradiation positively correlated with antioxidant activity (blanched peanuts). No correlation was found between irradiation and AA (in-shell samples) or fatty acids and TP (in-shell and blanched peanuts). Irradiation protected against MF and retained both the polyunsaturated fatty acids and polyphenols in the samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gellan-based polymer electrolytes (PEs), doped with lithium iodide (LiI), were prepared and their electrical properties were characterized. The samples are thermally stable up to 234 degrees C and exhibit ionic conductivity of 3.8 x 10(-4) S/cm at room temperature for the sample doped with 40 wt% of LiI. Addition of 10 wt% of glycerol promotes an increase of the ionic conductivity to 1.5 x 10(-3) S/cm, which remains stable up to 100 degrees C. The activation energies of 2.4 to 12.4 kJ/mol were derived from the Arrhenius model. The repeated ionic conductivity measurements as a function of temperature show that these membranes can be reversibly used between the room temperature and 100 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-shell, peeled and blanched peanut samples were characterized in relation to proximate composition and fatty acid profile. No difference was found in relation to its proximate composition. The three major fatty acids were palmitic acid, oleic acid, and linoleic acid. In order to investigate irradiation and storage effects, peanut samples were submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and monitored every three months. Peanuts responded differently to irradiation, particularly with regards to tocopherol contents, primary and secondary oxidation products and oil stability index. Induction periods and tocopherol contents were negatively correlated with irradiation doses and decreased moderately during storage. alpha-Tocopherol was the most gamma radiation sensitive and peeled samples were the most affected. A positive correlation was found among tocopherol contents and the induction period of the oils extracted from irradiated samples. Gamma radiation and storage time increased oxidation compounds production. If gamma radiation is considered an alternative for industrial scale peanut conservation, in-shell samples are the best feedstock. For the best of our knowledge this is the first article with such results; this way it may be helpful as basis for future studies on gamma radiation of in-shell crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 degrees C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 C for 2 h. The degree of structural order disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-thin (thicknesses of 50-90 nm) nanocomposite films of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm in diameter) and polyelectrolytes (doped polyaniline-PANI, poly-3,4-ethylenedioxy thiophene: polystyrene sulfonic acid-PEDOT:PSS, and sulfonated lignin-SL) are assembled layer-by-layer onto interdigitated microelectrodes aiming at to create novel nanostructured sensoactive materials for liquid media chemical sensors. The nanocomposites display a distinctive globular morphology with nanoparticles densely-packed while surrounded by polyelectrolytes. Due to the presence of np-CoFe2O4 the nanocomposites display low electrical conductivity according to impedance data. On the other hand, this apparent shortcoming turns such nanocomposites much more sensitive to the presence of ions in solution than films made exclusively of conducting polyelectrolytes. For example, the electrical resistance of np-CoFe2O4/PEDOT:PSS and PANI/SL/np-CoFe2O4/SL architectures has a 10-fold decrease when they are immersed in 20 mmol. L-1 NaCl solution. Impedance spectra fitted with the response of an equivalent circuit model suggest that the interface created between nanoparticles and polyelectrolytes plays a major role on the nanocomposites electrical/dielectrical behavior. Since charge transport is sensitive to nanoparticle-polyelectrolyte interfaces as well as to the physicochemical conditions of the environment, the np-CoFe2O4-based nanocomposites can be used as sensing elements in chemical sensors operated under ac regime and room temperature.