32 resultados para Reverse-transcription Polymerase Chain Reaction
Resumo:
Introduction: Vitamin D is responsible for the regulation of certain genes at the transcription level, via interaction with the vitamin D receptor, and influences host immune responses and aspects of bone development, growth, and homeostasis. Our aim was to investigate the association of TaqI vitamin D receptor gene polymorphism with external apical root resorption during orthodontic treatment. Methods: Our subjects were 377 patients with Class II Division 1 malocclusion, divided into 3 groups: (1) 160 with external apical root resorption <= 1.43 mm, (2) 179 with external apical root resorption >1.43 mm), and (3) 38 untreated subjects. External apical root resorption of the maxillary incisors was evaluated on periapical radiographs taken before and after 6 months of treatment. After DNA collection and purification, vitamin D receptor TaqI polymorphism analysis was performed by polymerase chain reaction-restriction fragment length polymorphism. Univariate and multivariate analyses were performed to verify the association of clinical and genetic variables with external apical root resorption (P <0.05). Results: There was a higher proportion of external apical root resorption in orthodontically treated patients compared with the untreated subjects. In patients orthodontically treated, age higher than 14 years old, initial size of the maxillary incisor root superior to 30 mm, and premolar extraction were associated with increased external apical root resorption. Genotypes containing the C allele were weakly associated with protection against external apical root resorption (CC + CT x TT [odds ratio, 0.29; 95% confidence interval, 0.07-1.23; P = 0.091]) when treated orthodontic patients were compared to untreated individuals. Conclusions: Clinical factors and vitamin D receptor TaqI polymorphism were associated with external apical root resorption in orthodontic patients. (Am J Orthod Dentofacial Orthop 2012; 142: 339-47)
Resumo:
The aim of this study was to evaluate the odontogenic potential of undifferentiated pulp cells (OD-21 cell line) through chemical stimuli in vitro. Cells were divided into uninduced cells (OD-21), induced cells (OD-21 cultured in supplemented medium/OD-21+OM) and odontoblast-like cells (MDPC-23 cell line). After 3, 7, 10 and 14 days of culture, it was evaluated: proliferation and cell viability, alkaline phosphatase activity, total protein content, mineralization, immunolocalization of dentin matrix acidic phosphoprotein 1 (DMP1), alkaline phosphatase (ALP) and osteopontin (OPN) and quantification of genes ALP, OSTERIX (Osx), DMP1 and runt-related transcription factor 2 (RUNX2) through real-time polymerase chain reaction (PCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (p<0.05). There was a decrease in cell proliferation in OD-21 + OM, whereas cell viability was similar in all groups, except at 7 days. The amount of total protein was higher in group OD-21 + OM in all periods; the same occurred with ALP activity after 10 days when compared with OD-21, with no significant differences from the MDPC-23 group. Mineralization was higher in OD-21+OM when compared with the negative control. Immunolocalization demonstrated that DMP1 and ALP were highly expressed in MDPC-23 cells and OD-21 + OM cells, whereas OPN was high in all groups. Real-time PCR revealed that DMP1 and ALP expression was higher in MDPC-23 cell cultures, whereas RUNX2 was lower for these cells and higher for OD-21 negative control. Osx expression was lower for OD-21 + OM. These results suggest that OD-21 undifferentiated pulp cells have odontogenic potential and could be used in dental tissue engineering.