37 resultados para OXYGEN SPECIES PRODUCTION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day] pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs. (Hypertension. 2012; 59: 1263-1271.). Online Data Supplement

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx-), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N-epsilon-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx- levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx- levels were partially restored. Conclusion: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Circulating neutrophils promptly react to different substances in the blood and orchestrate the beginning of the innate inflammatory response. We have shown that in vivo exposure to hydroquinone (HQ), the most oxidative compound of cigarette smoke and a toxic benzene metabolite, affects circulating neutrophils, making them unresponsive to a subsequent bacterial infection. In order to understand the action of toxic molecular mechanisms on neutrophil functions, in vitro HQ actions on pro-inflammatory mediator secretions evoked by Escherichia coli lipopolysaccharide (LPS) were investigated. Neutrophils from male Wistar rats were cultured with vehicle or HQ (5 or 10 mu M; 2 h) and subsequently incubated with LPS (5 mu g/ml; 18 h). Hydroquinone treatment impaired LPS-induced nitric oxide (NO), tumour necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta and IL-6 secretions by neutrophils. The toxic effect was not dependent on cell death, reduced expression of the LPS receptor or toll-like receptor-4 (TLR-4) or cell priming, as HQ did not induce reactive oxygen species generation or beta(2)integrin membrane expression. The action of toxic mechanisms on cytokine secretion was dependent on reduced gene synthesis, which may be due to decreased nuclear factor kappa B (NF-kappa B) nuclear translocation. Conversely, this intracellular pathway was not involved in impaired NO production because HQ treatments only affected inducible nitric oxide synthase protein expression and activity, suggesting posttranscriptional and/or posttranslational mechanisms of action. Altogether, our data show that HQ alters the action of different LPS-activated pathways on neutrophils, which may contribute to the impaired triggering of the host innate immune reaction detected during in vivo HQ exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patients fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

'Golden' papayas at maturity stage 1 (15% yellow skin) were chosen to study selected oxidative processes, the activity of antioxidant enzymes and lipid peroxidation in storage at 22°C, during the ripening of the fruit. An increase in ethylene production was observed on the second day of storage and it was followed by an increase in respiration. An increased activity of catalase, glutathione reductase and ascorbate peroxidase was observed concurrently or soon after this increase in ethylene production and respiration. The increased activity of these enzymes near the peaks of ethylene production and respiration is related to the production of oxidants accompanying the onset of ripening. On the fourth day of storage, there was an increased lipid peroxidation and decreased activities of catalase, glutathione reductase and superoxide dismutase. Lipid peroxidation induces the increase of antioxidant enzymes, which can be verified by further increases in the activities of catalase, glutathione reductase, superoxide dismutase and ascorbate peroxidase. Unlike the other antioxidant enzymes, the ascorbate peroxidase activity in the pulp increased continuously during ripening, suggesting its important role in combating reactive oxygen species during papaya ripening. With regard to physical-chemical characteristics, the soluble solids did not vary significantly, the acidity and ascorbic acid contents increased, and hue angle and firmness decreased during storage. The results revealed that there was variation in the activity of antioxidant enzymes, with peaks of lipid peroxidation during the ripening of 'Golden' papaya. These results provide a basis for future research, especially with regard to the relationships among the climacteric stage, the activation of antioxidant enzymes and the role of ascorbate peroxidase in papaya ripening.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glutamate acts as a neurotransmitter within the Central Nervous System (CNS) and modifies immune cell activity. In lymphocytes, NMDA glutamate receptors regulate intracellular calcium, the production of reactive oxygen species and cytokine synthesis. MK-801, a NMDA receptor open-channel blocker, inhibits calcium entry into mast cells, thereby preventing mast cell degranulation. Several lines of evidence have shown the involvement of NMDA glutamate receptors in amphetamine (AMPH)-induced effects. AMPH treatment has been reported to modify allergic lung inflammation. This study evaluated the effects of MK-801 (0.25mg/kg) and AMPH (2.0mg/kg), given alone or in combination, on allergic lung inflammation in mice and the possible involvement of NMDA receptors in this process. In OVA-sensitized and challenged mice, AMPH and MK-801 given alone decreased cellular migration into the lung, reduced IL-13 and IL10 levels in BAL supernatant, reduced ICAM-1 and L-selectin expression in granulocytes in the BAL and decreased mast cell degranulation. AMPH treatment also decreased IL-5 levels. When both drugs were administered, treatment with MK-801 reversed the decrease in the number of eosinophils and neutrophils induced by AMPH in the BAL of OVA-sensitized and challenged mice as well as the effects on the expression of L-selectin and ICAM-1 in granulocytes, the IL-10, IL-5 and IL-13 levels in BAL supernatants and increased mast cell degranulation. At the same time, treatment with MK-801, AMPH or with MK-801+AMPH increased corticosterone serum levels in allergic mice. These results are discussed in light of possible indirect effects of AMPH and MK-801 via endocrine outflow from the CNS (i.e., HPA-axis activity) to the periphery and/or as a consequence of the direct action of these drugs on immune cell activity, with emphasis given to mast cell participation in the allergic lung response of mice.