32 resultados para Magnetic resonance imaging, perfusion-weighted
Resumo:
OBJECTIVE: The aim of the current study was to monitor the migration of superparamagnetic iron oxide nanoparticle (SPION)-labeled C6 cells, which were used to induce glioblastoma tumor growth in an animal model, over time using magnetic resonance imaging (MRI), with the goal of aiding in tumor prognosis and therapy. METHODS: Two groups of male Wistar rats were used for the tumor induction model. In the first group (n=3), the tumors were induced via the injection of SPION-labeled C6 cells. In the second group (n=3), the tumors were induced via the injection of unlabeled C6 cells. Prussian Blue staining was performed to analyze the SPION distribution within the C6 cells in vitro. Tumor-inducing C6 cells were injected into the right frontal cortex, and subsequent tumor monitoring and SPION detection were performed using T2- and T2*-weighted MRI at a 2T field strength. In addition, cancerous tissue was histologically analyzed after performing the MRI studies. RESULTS: The in vitro qualitative evaluation demonstrated adequate distribution and satisfactory cell labeling of the SPIONs. At 14 or 21 days after C6 injection, a SPION-induced T2- and T2*-weighted MRI signal reduction was observed within the lesion located in the left frontal lobe on parasagittal topography. Moreover, histological staining of the tumor tissue with Prussian Blue revealed a broad distribution of SPIONs within the C6 cells. CONCLUSION: MRI analyses exhibit potential for monitoring the tumor growth of C6 cells efficiently labeled with SPIONs.
Resumo:
Although the diagnosis of Graves' orbitopathy is primarily made clinically based on laboratory tests indicative of thyroid dysfunction and autoimmunity, imaging studies, such as computed tomography, magnetic resonance imaging, ultrasound and color Doppler imaging, play an important role both in the diagnosis and follow-up after clinical or surgical treatment of the disease. Imaging studies can be used to evaluate morphological abnormalities of the orbital structures during the diagnostic workup when a differential diagnosis versus other orbital diseases is needed. Imaging may also be useful to distinguish the inflammatory early stage from the inactive stage of the disease. Finally, imaging studies can be of great help in identifying patients prone to develop dysthyroid optic neuropathy and therefore enabling the timely diagnosis and treatment of the condition, avoiding permanent visual loss. In this paper, we review the imaging modalities that aid in the diagnosis and management of Graves' orbitopathy, with special emphasis on the diagnosis of optic nerve dysfunction in this condition.