32 resultados para MITOCHONDRIAL RESPIRATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. METHODS AND RESULTS: We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28 ± 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. CONCLUSIONS: Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial disorders have become the most common cause of inborn errors of metabolism. Impairments in mitochondrial protein synthesis are one of the causes of these diseases, which are clinically and genetically heterogeneous. The mitochondrial translation machinery decodes 13 polypeptides essential for the oxidative phosphorylation process. Mitochondria protein synthesis depends on the integrity of mitochondrial rRNAs and tRNAs genes, and at least one hundred of nuclear encoded products. Diseases caused by mutations in mitochondrial genes as well as in ribosomal proteins, translational factors, RNA modifying enzymes, and all other constituents of the translational machinery have been described in patients with combine respiratory chain deficiency, and are the object of this review.