49 resultados para LIPID-PEROXIDATION
Resumo:
Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.
Resumo:
Objectives The aim of this work was to study the effects of P. major against the oxidative damage of isolated rat liver mitochondria. Methods The extracts were obtained using methanol (MeOH), ethyl acetate (EAc), dichloromethane (DCM), and hexane (Hex) as solvents. Key findings Hex, DCM, and EAc totally, and MeOH partially, inhibited ROS generation and lipid peroxidation of membranes induced by Fe2+ or t-BOOH. However, only MeOH was able to prevent the t-BOOH-induced glutathione and NAD(P)H oxidation. All extracts chelated Fe2+ and reduced DPP Hradicals. EPR analysis revealed that P. major exhibited potent scavenger activity for hydroxyl radicals. Conclusions The potent antioxidant activity exhibited by P. major was able to prevent oxidative mitochondrial damage, contributing to the understanding of its hepatoprotective action against ROS-mediated toxicity.
Resumo:
Bixin is the main carotenoid found in annatto seeds (Bixa orellana L.) and is responsible for their reddish-orange color. The antioxidant properties of this compound are associated with its ability to scavenge free radicals, which may reduce damage and protect tissues against toxicity caused by anticancer drugs such as cisplatin. In this study, the genotoxicity and antigenotoxicity of bixin on cisplatin-induced toxicity in PC12 cells was assessed. Cytotoxicity was evaluated using the mu assay, mutagenicity, genotoxicity, and protective effect of bixin were evaluated using the micronucleus test and comet assay. PC12 cells were treated with bixin (0.05, 0.08, and 0.10 mu g/mL), cisplatin (0.1 mu g/mL) or a combination of both bixin and cisplatin. Bixin was neither cytotoxic nor genotoxic compared to the controls. In the combined treatment bixin significantly reduced the percentage of DNA in tail and the frequency of micronuclei induced by cisplatin. This result suggests that bixin can function as a protective agent, reducing cisplatin-induced DNA damage in PC12 cells, and it is possible that this protection could also extend to neuronal cells. Further studies are being conducted to better understand the mechanisms involved in the activity of this protective agent prior to using it therapeutically. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: We tested the effects of liver reperfusion in the immunohistochemical expression of nitric oxide synthase on the thoracic aorta and the heart. Materials and Methods: We randomized 24 male Wistar rats into 3 groups: (1) control; (2) R2 group, with 60 minutes of partial (70%) liver ischemia and 2 hours of global liver reperfusion; (3) and R6 group, with 60 minutes of partial liver ischemia and 6 hours of global liver reperfusion. Results: In the heart, there was little, diffuse immunohistochemical endothelial staining; immunohistochemical inducible nitric oxide synthase staining was expressed in the adventitia layer of intramyocardial vessels in both cases, with a time-dependent but not statistically significant increase. In the thoracic aorta, a time-dependent decrease in endothelial nitric oxide synthase expression in the muscular layer after reperfusion, which was statistically significant in R6 versus the control. Positive immunostaining for inducible nitric oxide synthase was seen in the muscular and endothelial layers, and this varied from moderate in the control group, to light in the endothelium in groups R2 and R6. Conclusions: We observed changes that may be implicated in heart injury and impairment of aortal tone after liver ischemia and reperfusion injury.
Resumo:
In order to provide information that may help researchers to understand the main cause(s) of differences in bull fertility frequently observed in field trials, this study aimed to investigate conception rates as well as several in vitro sperm characteristics of different sires of unknown fertility utilized in a Timed-AI (TAI) program. Suckled Nelore cows submitted to the same TAI protocol were allocated into eight breeding groups of approximately 120 animals each. Frozen semen doses from three Angus bulls and three different batches from each bull were utilized. Approximately 100 doses from each batch were used in TAI. Sires, batches and AI technicians were equally distributed across breeding groups. Cows were examined for pregnancy diagnosis 40 d after TAI. For in vitro sperm analyses, the same thawing procedure was repeated in the laboratory to mimic field conditions. The following in vitro sperm characteristics were assessed: computerized motility, thermal resistance, plasma and acrosomal membrane integrity, lipid peroxidation, morphology, morphometry and chromatin structure. No effect of breeding group, body condition score, AI technician and sire was observed. However, some significant differences among bulls were detected in laboratory analyses. Semen from sire presenting numerically lower (P > 0.05) pregnancy/AI also presented lower (P < 0.05) values in all sperm characteristics analyzed in thermal resistance test at 4 h (Total Motility, Progressive Motility, Average Path Velocity, Straight-Line Velocity, Curvilinear Velocity, Amplitude of Lateral Head Displacement, Beat Cross Frequency, Straightness, Linearity, and Percentage of Rapidly Moving Cells), higher (P < 0.05) Major and Total Defects in sperm morphological test, lower (P < 0.05) Length, Ellipticity and Fourier parameter (Fourier 0) in sperm morphometric analysis as well as higher (P < 0.05) chromatin heterogeneity. It was concluded that, although no bull effect was observed in the field experiment, the sire that presented numerically lower pregnancy/AI also presented lower semen quality according to the laboratory analyses performed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective was to determine the effect of sequence of insemination after simultaneous thawing of multiple 0.5 mL semen straws on conception rate in suckled multiparous Nelore cows. The effect of this thawing procedure on in vitro sperm characteristics was also evaluated. All cows (N = 944) received the same timed AI protocol. Ten straws (0.5 mL) of frozen semen from the same batch were simultaneously thawed at 36 degrees C, for a minimum of 30 sec. One straw per cow was used for timed AI. Frozen semen from three Angus bulls was used. Timed AI records included sequence of insemination (first to tenth) and time of semen removal from thawing bath. For laboratory analyses, the same semen batches used in the field experiment were evaluated. Ten frozen straws from the same batch were thawed simultaneously in a thawing unit identical to that used in the field experiment. The following sperm characteristics were analyzed: sperm motility parameters, sperm thermal resistance, plasma and acrosomal membrane integrity, lipid peroxidation, chromatin structure, and sperm morphometry. Based on logistic regression, there were no significant effects of breeding group, body condition score, AI technician, and sire on conception rate, but there was an interaction between sire and straw group (P = 0.002). Semen from only one bull had decreased (P < 0.05) field fertility for the group of straws associated with the longest interval from thawing to AI. However, the results of the laboratory experiment were unable to explain the findings of the field experiment. Sperm width:length ratio of morphometric analysis was the single sperm characteristic with a significant interaction between sire and straw group (P = 0.02). It was concluded that sequence of insemination after simultaneous thawing of 10 semen straws can differently affect conception rates at timed AI, depending on the sire used. Nevertheless, the effects of this thawing environment on in vitro sperm characteristics, remain to be further investigated. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 +/- 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Results: Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions: Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.
Resumo:
Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE To assess the effect of varicocele on sperm DNA integrity, mitochondrial activity, lipid peroxidation and acrosome integrity. PATIENTS AND METHODS In all, 30 patients with a clinically diagnosed varicocele of grade II or III and 32 men without a varicocele were evaluated for sperm DNA fragmentation (comet assay), mitochondrial activity (3,3'-diaminobenzidine assay), lipid peroxidation (malondialdehyde) and acrosome integrity (fluorescent probe labelled peanut agglutinin). RESULTS The varicocele group showed fewer spermatozoa with intact DNA (grade II, P = 0.040), more cells with inactive mitochondria (class III, P = 0.001), fewer cells with active mitochondria (class I, P = 0.005) and fewer spermatozoa with intact acrosomes (P < 0.001). Finally, no significant differences were observed in lipid peroxidation levels. CONCLUSION Men with varicocele showed an increase in sperm DNA fragmentation and a reduction in mitochondrial activity and acrosome integrity. However, lipid peroxidation levels remained unchanged.
Resumo:
Brossi P.M., Baccarin R.Y.A. & Massoco C.O. 2012 Do blood components affect the production of reactive oxygen species (ROS) by equine synovial cells in vitro? Pesquisa Veterinaria Brasileira 32(12):1355-1360. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Butanta, Sao Paulo, SP 5508-210, Brazil. E-mail: baccarin@ usp.br Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)(4) - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.
Resumo:
Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n?=?20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808?nm, tip area of 0.00785?cm2, power 30?mW, application time 47?seconds, fluence 180?J/cm2; 3.8?mW/cm2; and total energy 1.4?J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-k beta and COX-2 and by TNF-a and IL-1 beta concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. Lasers Surg. Med. 44: 726735, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Background: Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents. Results: Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals. Conclusions: The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.
Resumo:
The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.
Resumo:
Ceriporiopsis subvermispora is a selective fungus in the wood delignification and the most promising in biopulping. Through the lipid peroxidation initiated by manganese peroxidase (MnP), free radicals can be generated, which can act in the degradation of lignin nonphenolic structures. This work evaluated the prooxidant activity (based in lipid peroxidation) of enzymatic extracts from wood biodegradation by this fungus in cultures containing exogenous calcium, oxalic acid or soybean oil. It was observed that MnP significant activity is required to promote lipid peroxidation and wood delignification. Positive correlation between prooxidant activity x MnP was observed up to 300 IU kg-1 of wood.
Resumo:
OBJECTIVE: The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia patients who did not take hydroxyurea was compared with a control group of 96 individuals without any hemoglobinopathy. METHODS: Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent antioxidant capacity and plasma glutathione levels. RESULTS: Thiobarbituric acid reactive species values were higher in patients without specific medication, followed by patients taking hydroxyurea and the Control Group (p < 0.0001). The antioxidant capacity was higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent antioxidant capacity and p < 0.0292 for plasma glutathione). Thiobarbituric acid reactive species levels were correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040) and lower hemoglobin F concentrations(r = -0.52; p = 0.0067). On the other hand, plasma glutathione levels were negatively correlated with hemoglobin S levels (r = -0.49; p = 0.0111) and positively associated with hemoglobin F values (r = 0.56; p = 0.0031). CONCLUSION: Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain the reduction in lipid peroxidation and increased antioxidant defenses in these individuals.