35 resultados para Infectious Disease Transmission
Resumo:
We developed a stochastic lattice model to describe the vector-borne disease (like yellow fever or dengue). The model is spatially structured and its dynamical rules take into account the diffusion of vectors. We consider a bipartite lattice, forming a sub-lattice of human and another occupied by mosquitoes. At each site of lattice we associate a stochastic variable that describes the occupation and the health state of a single individual (mosquito or human). The process of disease transmission in the human population follows a similar dynamic of the Susceptible-Infected-Recovered model (SIR), while the disease transmission in the mosquito population has an analogous dynamic of the Susceptible-Infected-Susceptible model (SIS) with mosquitos diffusion. The occurrence of an epidemic is directly related to the conditional probability of occurrence of infected mosquitoes (human) in the presence of susceptible human (mosquitoes) on neighborhood. The probability of diffusion of mosquitoes can facilitate the formation of pairs Susceptible-Infected enabling an increase in the size of the epidemic. Using an asynchronous dynamic update, we study the disease transmission in a population initially formed by susceptible individuals due to the introduction of a single mosquito (human) infected. We find that this model exhibits a continuous phase transition related to the existence or non-existence of an epidemic. By means of mean field approximations and Monte Carlo simulations we investigate the epidemic threshold and the phase diagram in terms of the diffusion probability and the infection probability.
Resumo:
To perform a systematic review of the utility of the Beck Depression Inventory for detecting depression in medical settings, this article focuses on the revised version of the scale (Beck Depression Inventory-II), which was reformulated according to the DSM-IV criteria for major depression. We examined relevant investigations with the Beck Depression Inventory-II for measuring depression in medical settings to provide guidelines for practicing clinicians. Considering the inclusion and exclusion criteria seventy articles were retained. Validation studies of the Beck Depression Inventory-II, in both primary care and hospital settings, were found for clinics of cardiology, neurology, obstetrics, brain injury, nephrology, chronic pain, chronic fatigue, oncology, and infectious disease. The Beck Depression Inventory-II showed high reliability and good correlation with measures of depression and anxiety. Its threshold for detecting depression varied according to the type of patients, suggesting the need for adjusted cut-off points. The somatic and cognitive-affective dimension described the latent structure of the instrument. The Beck Depression Inventory-II can be easily adapted in most clinical conditions for detecting major depression and recommending an appropriate intervention. Although this scale represents a sound path for detecting depression in patients with medical conditions, the clinician should seek evidence for how to interpret the score before using the Beck Depression Inventory-II to make clinical decisions
Resumo:
Malaria is a widespread infectious disease caused by the parasite Plasmodium. During pregnancy, malaria infection leads to a range of complications that can affect both the mother and fetus, including stillbirth, infant mortality, and low birth weight. In this study, we utilized a mouse model of placental malaria (PM) infection to determine the importance of the protein MyD88 in the host immune response to Plasmodium during pregnancy. Initially, we demonstrated that Plasmodium berghei NK65GFP adhered to placental tissue via chondroitin sulfate A and induced PM in mice with a C57BL/6 genetic background. To evaluate the involvement of MyD88 in the pathology of PM, we performed a histopathological analysis of placentas obtained from MyD88(-/-) and wild-type (WT) mice following infection on the 19th gestational day. Our data demonstrated that the detrimental placental alterations observed in the infected mice were correlated with the expression of MyD88. Moreover, in the absence of this protein, production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) was significantly reduced in the infected mice. More importantly, in contrast to fetuses from infected WT mice, which exhibited a reduction in body weight, the fetuses from infected MyD88(-/-) mice did not display significant weight loss compared to their noninfected littermates. In addition, we observed a decrement of maternal care associated with malaria infection, which was attenuated in the MyD88-deficient mice. Collectively, the results of this study illustrate the pivotal importance of the MyD88 signaling pathway in the pathogenesis of placental malaria, thus presenting new possibilities for targeting MyD88 in therapeutic interventions.
Resumo:
Chagas disease is now an active disease in the urban centers of countries of nonendemicity and endemicity because of congenital and blood and/or organ transplantation transmissions and the reactivation of the chronic disease in smaller scale than vectorial transmission, reported as controlled in countries of endemicity. Oral transmission of Chagas disease has emerged in unpredictable situations in the Amazon region and, more rarely, in areas of nonendemicity where the domiciliary triatomine cycle was under control because of exposition of the food to infected triatomine and contaminated secretions of reservoir hosts. Oral transmission of Chagas disease is considered when >1 acute case of febrile disease without other causes is linked to a suspected food and should be confirmed by the presence of the parasite after direct microscopic examination of the blood or other biological fluid sample from the patient.
Resumo:
In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.