46 resultados para Immunization.
Resumo:
Abstract Background Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.
Resumo:
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.
Resumo:
Vaccines are considered by many to be one of the most successful medical interventions against infectious diseases. But many significant obstacles remain, such as optimizing DNA vaccines for use in humans or large animals. The amount of doses, route and easiness of administration are also important points to consider in the design of new DNA vaccines. Heterologous prime-boost regimens probably represent the best hope for an improved DNA vaccine strategy. In this study, we have shown that heterologous prime-boost vaccination against tuberculosis (TB) using intranasal BCG priming/DNA-HSP65 boosting (BCGin/DNA) provided significantly greater protection than that afforded by a single subcutaneous or intranasal dose of BCG. In addition, BCGin/DNA immunization was also more efficient in controlling bacterial loads than were the other prime-boost schedules evaluated or three doses of DNA-HSP65 as a naked DNA. The single dose of DNA-HSP65 booster enhanced the immunogenicity of a single subcutaneous BCG vaccination, as evidenced by the significantly higher serum levels of anti-Hsp65 IgG2a Th1-induced antibodies, as well as by the significantly greater production of IFN-γ by antigen-specific spleen cells. The BCG prime/DNA-HSP65 booster was also associated with better preservation of lung parenchyma.
Resumo:
Abstract Background Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs.
Resumo:
Abstract Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.
Resumo:
Health safety during trips is based on previous counseling, vaccination and prevention of infections, previous diseases or specific problems related to the destination. Our aim was to assess two aspects, incidence of health problems related to travel and the traveler’s awareness of health safety. To this end we phone-interviewed faculty members of a large public University, randomly selected from humanities, engineering and health schools. Out of 520 attempts, we were able to contact 67 (12.9%) and 46 (68.6%) agreed to participate in the study. There was a large male proportion (37/44, 84.1%), mature adults mostly in their forties and fifties (32/44, 72.7%), all of them with higher education, as you would expect of faculty members. Most described themselves as being sedentary or as taking occasional exercise, with only 15.9% (7/44) taking regular exercise. Preexisting diseases were reported by 15 travelers. Most trips lasted usually one week or less. Duration of the travel was related to the destination, with (12h) or longer trips being taken by 68.2% (30/44) of travelers, and the others taking shorter (3h) domestic trips. Most travelling was made by air (41/44) and only 31.8% (14/44) of the trips were motivated by leisure. Field research trips were not reported. Specific health counseling previous to travel was reported only by two (4.5%). Twenty seven of them (61.4%) reported updated immunization, but 11/30 reported unchecked immunizations. 30% (9/30) reported travel without any health insurance coverage. As a whole group, 6 (13.6%) travelers reported at least one health problem attributed to the trip. All of them were males travelling abroad. Five presented respiratory infections, such as influenza and common cold, one neurological, one orthopedic, one social and one hypertension. There were no gender differences regarding age groups, destination, type of transport, previous health counseling, leisure travel motivation or pre-existing diseases. Interestingly, the two cases of previous health counseling were made by domestic travelers. Our data clearly shows that despite a significant number of travel related health problems, these highly educated faculty members, had a low awareness of those risks, and a significant number of travels are made without prior counseling or health insurance. A counseling program conducted by a tourism and health professional must be implemented for faculty members in order to increase the awareness of travel related health problems.
Resumo:
In this work we propose a mathematical approach to estimate the dengue force of infection, the average age of dengue first infection, the optimum age to vaccinate children against dengue in a routine fashion and the optimum age interval to introduce the dengue vaccine in a mass vaccination campaign. The model is based on previously published models for vaccination against other childhood infections, which resulted in actual vaccination programmes in Brazil. The model was applied for three areas of distinct levels of endemicity of the city of Recife in Northeastern State of Pernambuco, Brazil. Our results point to an optimal age to introduce the dengue vaccine in the routine immunization programme at two years of age and an age interval to introduce a mass vaccination between three and 14 years of age.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
The aim of this study was to present the contributions of the systematic review of economic evaluations to the development of a national study on childhood hepatitis A vaccination. A literature review was performed in EMBASE, MEDLINE, WOPEC, HealthSTAR, SciELO and LILACS from 1995 to 2010. Most of the studies (8 of 10) showed favorable cost-effectiveness results. Sensitivity analysis indicated that the most important parameters for the results were cost of the vaccine, hepatitis A incidence, and medical costs of the disease. Variability was observed in methodological characteristics and estimates of key variables among the 10 studies reviewed. It is not possible to generalize results or transfer epidemiological estimates of resource utilization and costs associated with hepatitis A to the local context. Systematic review of economic evaluation studies of hepatitis A vaccine demonstrated the need for a national analysis and provided input for the development of a new decision-making model for Brazil.
Resumo:
O objetivo deste artigo, situado no campo da comunicação em saúde, é analisar os sentidos atribuídos discursivamente à febre amarela silvestre durante a cobertura jornalística da epizootia da doença, ocorrida no Brasil no verão 2007-2008. Utilizando o referencial teórico das práticas discursivas e da produção de sentidos no cotidiano e as hipóteses de agendamento (agenda-setting) e enquadramento (framing) da notícia, foram analisadas todas as matérias sobre febre amarela veiculadas pelo jornal Folha de S. Paulo, no período de 21 de dezembro de 2007 a 29 de fevereiro de 2008, e todos os documentos oficiais sobre a epizootia emitidos pela autoridade brasileira de saúde pública entre 3 de janeiro e 28 de fevereiro de 2008. Os achados indicam que as estratégias discursivas da cobertura jornalística relativizaram o discurso da autoridade de saúde pública; priorizaram a divulgação do número de casos; enfatizaram a vacinação como o limite entre a vida e a morte, omitindo riscos do uso indiscriminado do imunobiológico; e propagaram a iminência de uma epidemia de febre amarela de grandes proporções. Essas estratégias deram novos sentidos à doença, deslocando o evento de sua forma silvestre, espacialmente restrita e de gravidade limitada, para a urbana, de caráter epidêmico e potencialmente mais grave. Secundariamente, o estudo permitiu identificar os impactos desse discurso midiático sobre o sistema nacional de imunização e os riscos a que a população foi exposta em função dos sentidos produzidos: em 2008, foram registrados 8 casos de reação grave à vacina, dos quais 6 foram a óbito.
Resumo:
Introduction Vaccination is an effective tool against several infectious agents including influenza. In 2010, the Advisory Committee on Immunization Practices (ACIP) recommended influenza A H1N1/2009 immunization for high risk groups, including juvenile idiopathic arthritis (JIA) patients and more recently the EULAR task force reinforced the importance of vaccination in immunosuppressed pediatric rheumatologic patients. We have recently shown that Influenza A H1N1/2009 vaccination generated protective antibody production with short-term safety profile among 93 JIA patients, but the possible impact of the vaccine in autoimmune response in JIA have not been studied. Therefore, we aimed to assess the production of some autoantibodies generated following influenza H1N1 vaccination in JIA patients. Objectives To assess the autoimmune response and H1N1 serology following influenza H1N1 vaccination in patients with JIA. Methods Cepa A/California/7/2009 (NYMC X-179A) anti-H1N1 was used to vaccinate JIA patients: 1 dose of immunization was given to all participants and those <9yrs of age received a second booster 3 weeks apart. Sera were analyzed before and 3 weeks following complete vaccination. Serology against H1N1 virus was performed by hemagglutination inhibition antibody assay, rheumatoid factor (RF) by latex fixation test, antinuclear antibodies (ANA) by IIF, IgM and IgG anticardiolipin (aCL) by ELISA.Results Among 98 JIA patients that were vaccinated, 58 sera were available for this study. Mean age of 58 JIA patients was 23.9 ± 9.5 yrs, 38 were females and 20 males with mean disease duration of 14.7 ± 10.1 yrs. JIA subtypes were: 33 (57%) poliarticular, 10 (17%) oligoarticular, 6 (10%) systemic and 9 (16%) other. Sixteen patients were off drugs while 42 (72%) were under different pharmacotherapy: 32 (55%) were on 1 DMARD/IS, 10 (17%) on 2 DMARDs/IS, 19 (33%) antimalarials, 29 (50%) MTX, 8(14%) sulfasalazine, 6 (10%) anti-TNFs, 4 (7%) abatacept; no patient was using prednisone >0.5 mg/kg/d. Seroprotection rates against H1N1 influenza increased from 23 to 83% and seroconversion rates were achieved in 78% JIA. Prior to vaccination, 31(53.4%) JIA patients were ANA+, 6(10.3%) RF+, and 4 (7%) IgM + IgG aCL+. After complete H1N1 vaccination, positivity for ANA remained the same whereas 1 patient became negative for IgG aCL, and another for RF, IgM and IgG aCL. One (1.7%) patient turned low titer IgG aCL+. Conclusion Vaccination of JIA patients against pandemic influenza A (H1N1) generated successful protective antibody production without the induction of autoantibody production, except for 1 patient that became positive for low titer IgG aCL, supporting its safety.
Resumo:
Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.
Resumo:
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.
Resumo:
OBJETIVO: Analisar a efi cácia e segurança de vacina recombinante contra hepatite B em recém-nascidos. MÉTODOS: O estudo foi conduzido em hospital geral do município de Guarulhos, SP, entre 2002 e 2005. A vacina recombinante contra hepatite B do Instituto Butantan (VrHB-IB) foi analisada em dois ensaios clínicos. Em ambos os ensaios, os recém-nascidos foram alocados aleatoriamente ao grupo experimental ou controle (vacina de referência). Os recém-nascidos receberam três doses das vacinas, uma em até 24 h após o nascimento e as subseqüentes 30 e 180 dias após. No primeiro ensaio 538 recém-nascidos completaram o protocolo e no segundo ensaio, 486. Considerou-se critério de equivalência a diferença na soroproteção inferior a 5%. RESULTADOS: A soroproteção no primeiro ensaio (anti HBs ≥ 10mUI/ml) foi de 92,5% (247/267) no grupo experimental, comparada a 98,5% (267/271) no grupo controle (p = 0,001). Com este resultado, a VrHB-IB não atingiu o critério de equivalência estabelecido. Após o aumento da concentração de antígeno na vacina para 25μg, a soroproteção no segundo ensaio foi de 100% no grupo experimental e 99,2% no grupo controle. Nenhum evento adverso grave foi registrado. CONCLUSÕES: A vacina VrHB-IB modifi cada foi considerada equivalente à vacina de referência e seu uso recomendado à vacinação de recém-nascidos.
Resumo:
Background. Brazil conducted mass immunization of women of childbearing age in 2001 and 2002. Surveillance was initiated for vaccination of women during pregnancy to monitor the effects of rubella vaccination on fetal outcomes. Methods. Women vaccinated while pregnant or prior to conception were reported to the surveillance system. Susceptibility to rubella infection was determined by anti-rubella immunoglobulin (Ig) M and IgG immunoassays. Susceptible women were observed through delivery. Live-born infants were tested for anti-rubella IgM antibody; IgM-seropositive newborns were tested for viral shedding and observed for 12 months for signs of congenital rubella syndrome. Incidence of congenital rubella infection was calculated using data from 7 states. Results. A total of 22 708 cases of rubella vaccination during pregnancy or prior to conception were reported nationwide, 20 536 (90%) of which were from 7 of 27 states in Brazil. Of these, 2332 women were susceptible to rubella infection at vaccination. Sixty-seven (4.1%) of 1647 newborns had rubella IgM antibody (incidence rate, 4.1 congenital infections per 100 susceptible women vaccinated during pregnancy [95% confidence interval, 3.2–5.1]). None of the infants infected with rubella vaccine virus was born with congenital rubella syndrome. Conclusions. As rubella elimination goals are adopted worldwide, evidence of rubella vaccine safety aids in planning and implementation of mass adult immunization.