32 resultados para IRREVERSIBLE PULPITIS
Resumo:
An out of equilibrium Ising model subjected to an irreversible dynamics is analyzed by means of a stochastic dynamics, on a effort that aims to understand the observed critical behavior as consequence of the intrinsic microscopic characteristics. The study focus on the kinetic phase transitions that take place by assuming a lattice model with inversion symmetry and under the influence of two competing Glauber dynamics, intended to describe the stationary states using the entropy production, which characterize the system behavior and clarifies its reversibility conditions. Thus, it is considered a square lattice formed by two sublattices interconnected, each one of which is in contact with a heat bath at different temperature from the other. Analytical and numerical treatments are faced, using mean-field approximations and Monte Carlo simulations. For the one dimensional model exact results for the entropy production were obtained, though in this case the phase transition that takes place in the two dimensional counterpart is not observed, fact which is in accordance with the behavior shared by lattice models presenting inversion symmetry. Results found for the stationary state show a critical behavior of the same class as the equilibrium Ising model with a phase transition of the second order, which is evidenced by a divergence with an exponent µ ¼ 0:003 of the entropy production derivative.
Resumo:
Calcium tantalite (CaTa2O6) single crystal fibers were obtained by the laser-heated pedestal growth method (LHPG). At room temperature, this material can present three polymorphic modifications. The rapid crystallization inherent to the LHPG method produced samples within the Pm3 space group, with some chemical disorder. In order to check for polymorphic-induced transformations, the CaTa2O6 fibers have been submitted to different thermal treatments and investigated by micro-Raman spectroscopy. For short annealing times (15 min) at 1200 °C, the cubic modification was maintained, though with an improved crystalline quality, as evidenced by the enhanced inelastic scattered intensity (by ca. 250%) and narrowing of Raman bands. The polarized Raman spectra respected very well the predicted symmetries and the selection rules for this cubic modification. On the other hand, long annealing times (24 h) at 1200 °C led to a complete (irreversible) polymorphic transformation. The Raman bands became still more intense (ca. 15 times larger than for the as-grown fibers), narrower, and several new modes appeared. Also, the spectra became unpolarized, demonstrating a polycrystalline nature of the transformed crystals. The observed Raman modes could be fully assigned to an orthorhombic modification of CaTa2O6 belonging to the Pnma space group.