46 resultados para INSULIN EXOCYTOSIS
Resumo:
Objective Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. Patients and methods A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. Results There were no differences in age or height between the two groups, but weight (P = 0.007) and BMI (P = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0.01), HOMAIR (P = 0.01) and CrossLaps (P = 0.01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMAIR in the 140 individuals as a whole or in the separate MUT/N or N/N groups. Conclusions This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.
Resumo:
Background: Intralipid (R) and heparin infusion results in increased blood pressure and autonomic abnormalities in normal and hypertensive individuals. Objective: To evaluate insulin sensitivity and the impact of Intralipid (R) and heparin (ILH) infusion on hemodynamic, metabolic, and autonomic response in patients with the indeterminate form of Chagas' disease. Methods: Twelve patients with the indeterminate form of Chagas' disease and 12 healthy volunteers were evaluated. Results: Baseline blood pressure and heart rate were similar in both groups. Plasma noradrenaline levels were slightly increased in the Chagas' group. After insulin tolerance testing (ITT), a significant decline was noted in glucose in both groups. ILH infusion resulted in increased blood pressure in both groups, but there was no significant change in plasma noradrenaline. The low-frequency component (LF) was similar and similarly increased in both groups. The high-frequency component (HF) was lower in the Chagas' group. Conclusion: Patients with the indeterminate form of Chagas' disease had increased sympathetic activity at baseline and impaired response to insulin. They also had a lower high-frequency component and impaired baroreflex sensitivity at baseline and during Intralipid (R) and heparin infusion. (Arq Bras Cardiol 2012;98(3):225-233)
Resumo:
Diabetes mellitus (DM) is a great public health problem, which attacks part of the world population, being characterized by an imbalance in body glucose homeostasis. Physical exercise is pointed as a protective agent and is also recommended to people with DM. As pancreatic islets present an important role in glucose homeostasis, we aim to study the role of physical exercise (chronic adaptations and acute responses) in pancreatic islets functionality in Wistar male rats. First, animals were divided into two groups: sedentary (S) and aerobic trained (T). At the end of 8 weeks, half of them (S and T) were submitted to an acute exercise session (exercise until exhaustion), being subdivided as acute sedentary (AS) and acute trained (AT). After the experimental period, periepididymal, retroperitoneal and subcutaneous fat pads, blood, soleus muscle and pancreatic islets were collected and prepared for further analysis. From the pancreatic islets, total insulin content, insulin secretion stimulated by glucose, leucine, arginine and carbachol were analyzed. Our results pointed that body adiposity and glucose homeostasis improved with chronic physical exercise. In addition, total insulin content was reduced in group AT, insulin secretion stimulated by glucose was reduced in trained groups (T and AT) and insulin secretion stimulated by carbachol was increased in group AT. There were no significant differences in insulin secretion stimulated by arginine and leucine. We identified a possible modulating action on insulin secretion, probably related to the association of chronic adaptation with an acute response on cholinergic activity in pancreatic islets.
Resumo:
Abstract Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction.
Resumo:
Abstract Aim The purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA-IR, and endotoxin levels and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy. Design The present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n = 18, aged 15–19 y) with a body mass index > 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. In addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR). Results The most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR. In addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR. Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels. Conclusions The present results indicate an association between dietary fat intake and endotoxin level, which was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. In addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in improving inflammatory pathways.
Resumo:
Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.
Resumo:
Background Type 1 diabetes (T1DM) is frequently accompanied by dyslipidemia related with insulin-dependent steps of the intravascular lipoprotein metabolism. T1DM dyslipidemia may predispose to precocious cardiovascular disease and the lipid status in T1DM under intensive insulin treatment has not been sufficiently explored. The aim was to investigate the plasma lipids and the metabolism of LDL and HDL in insulin-treated T1DM patients with high glycemic levels. Methods Sixteen male patients with T1DM (26 ± 7 yrs) with glycated hemoglobin >7%, and 15 control subjects (28 ± 6 yrs) were injected with a lipid nanoemulsion (LDE) resembling LDL and labeled with 14C-cholesteryl ester and 3H-free-cholesterol for determination of fractional clearance rates (FCR, in h-1) and cholesterol esterification kinetics. Transfer of labeled lipids from LDE to HDL was assayed in vitro. Results LDL-cholesterol (83 ± 15 vs 100 ± 29 mg/dl, p=0.08) tended to be lower in T1DM than in controls; HDL-cholesterol and triglycerides were equal. LDE marker 14C-cholesteryl ester was removed faster from plasma in T1DM patients than in controls (FCR=0.059 ± 0.022 vs 0.039 ± 0.022h-1, p=0.019), which may account for their lower LDL-cholesterol levels. Cholesterol esterification kinetics and transfer of non-esterified and esterified cholesterol, phospholipids and triglycerides from LDE to HDL were also equal. Conclusion T1DM patients under intensive insulin treatment but with poor glycemic control had lower LDL-cholesterol with higher LDE plasma clearance, indicating that LDL plasma removal was even more efficient than in controls. Furthermore, HDL-cholesterol and triglycerides, cholesterol esterification and transfer of lipids to HDL, an important step in reverse cholesterol transport, were all normal. Coexistence of high glycemia levels with normal intravascular lipid metabolism may be related to differences in exogenous insulin bioavailabity and different insulin mechanisms of action on glucose and lipids. Those findings may have important implications for prevention of macrovascular disease by intensive insulin treatment.
Resumo:
Pregnancy affects both maternal and fetal metabolism, and even in non-diabetic women, it exerts a diabetogenic effect. Among pregnant women, 2% to 14% develop gestational diabetes. Pregnancy can also occur in women with preexisting diabetes, which may predispose the fetus to many alterations in organogenesis, restrict growth, and the mother, to some diabetes-related complications, such as retinopathy and nephropathy, or to acceleration of the course of these complications, if they are already present. Women with gestational diabetes generally start their treatment with diet and lifestyle changes; when these changes are not enough for optimal glycemic control, insulin therapy must then be considered. Women with type 2 diabetes using oral hypoglycemic agents are advised to change to insulin therapy. Those with preexisting type 1 diabetes should start intensive glycemic control. As basal insulin analogues have frequently been used off-label in pregnant women, there is a need to evaluate their safety and efficacy. The aim of this review is to report the use of both short- and long-acting insulin analogues during pregnancy and to enable clinicians, obstetricians, and endocrinologists to choose the best insulin treatment for their patients.
Resumo:
OBJECTIVE: To analyze the competency of people with diabetes mellitus to perform the insulin administration process, before and after telephone monitoring. METHODS: A quantitative, observational, longitudinal, comparative study. Participants were 26 people enrolled in the at-home capillary glycemia self-monitoring program. Data collection occurred in three phases, in January and February of 2010, for a period of 30 days for each person, by means of interview guided by a data collection instrument and an intervention manual. RESULTS: Of the 38 (100%) questions referring to the insulin administration process, telephone monitoring was demonstrated to be efficient in 30 (78.9%), but in 19 (50%) the intervention was statistically significant (p<0.05), in 11 (28.9%) there were no errors in responses to the final competency evaluation, and seven (18.4%) were not amenable to intervention. CONCLUSION: Telephone mornitoring was effective, as a nursing intervention strategy for the insulin administration process in the home.
Resumo:
Insulin resistance is a metabolic disorder in which target cells fail to respond to normal levels of circulating insulin. Insulin resistance has been associated with presence of acanthosis nigricans and acrochordons. It is known that early diagnosis and early initial treatment are of paramount importance to prevent a series of future complications. These dermatoses may represent an easily identifiable sign of insulin resistance and non-insulin-dependent diabetes.
Resumo:
Abstract Background We have searched if plasma high density lipoprotein-cholesterol (HDL-C) concentration interferes simultaneously with whole-body cholesterol metabolism and insulin sensitivity in normal weight healthy adult subjects. Methods We have measured the activities of several plasma components that are critically influenced by insulin and that control lipoprotein metabolism in subjects with low and high HDL-C concentrations. These parameters included cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), lecithin cholesterol acyl transferase (LCAT), post-heparin lipoprotein lipase (LPL), hepatic lipase (HL), pre-beta-1HDL, and plasma sterol markers of cholesterol synthesis and intestinal absorption. Results In the high-HDL-C group, we found lower plasma concentrations of triglycerides, alanine aminotransferase, insulin, HOMA-IR index, activities of LCAT and HL compared with the low HDL-C group; additionally, we found higher activity of LPL and pre-beta-1HDL concentration in the high-HDL-C group. There were no differences in the plasma CETP and PLTP activities. Conclusions These findings indicate that in healthy hyperalphalipoproteinemia subjects, several parameters that control the metabolism of plasma cholesterol and lipoproteins are related to a higher degree of insulin sensitivity.
Resumo:
Brazil is expected to have 19.6 million patients with diabetes by the year 2030. A key concept in the treatment of type 2 diabetes mellitus (T2DM) is establishing individualized glycemic goals based on each patient’s clinical characteristics, which impact the choice of antihyperglycemic therapy. Targets for glycemic control, including fasting blood glucose, postprandial blood glucose, and glycated hemoglobin (A1C), are often not reached solely with antihyperglycemic therapy, and insulin therapy is often required. Basal insulin is considered an initial strategy; however, premixed insulins are convenient and are equally or more effective, especially for patients who require both basal and prandial control but desire a more simplified strategy involving fewer daily injections than a basal-bolus regimen. Most physicians are reluctant to transition patients to insulin treatment due to inappropriate assumptions and insufficient information. We conducted a nonsystematic review in PubMed and identified the most relevant and recently published articles that compared the use of premixed insulin versus basal insulin analogues used alone or in combination with rapid-acting insulin analogues before meals in patients with T2DM. These studies suggest that premixed insulin analogues are equally or more effective in reducing A1C compared to basal insulin analogues alone in spite of the small increase in the risk of nonsevere hypoglycemic events and nonclinically significant weight gain. Premixed insulin analogues can be used in insulin-naïve patients, in patients already on basal insulin therapy, and those using basal-bolus therapy who are noncompliant with blood glucose self-monitoring and titration of multiple insulin doses. We additionally provide practical aspects related to titration for the specific premixed insulin analogue formulations commercially available in Brazil.
Resumo:
FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo)
Resumo:
LLong-chain fatty acids are capable of inducing alterations in the homoeostasis of glucose-stimulated insulin secretion (GSIS), but the effect of medium-chain fatty acids (MCFA) is poorly elucidated. In the present study, we fed a normoenergetic MCFA diet to male rats from the age of 1 month to the age of 4 months in order to analyse the effect of MCFA on body growth, insulin sensitivity and GSIS. The 45% MCFA substitution of whole fatty acids in the normoenergetic diet impaired whole body growth and resulted in increased body adiposity and hyperinsulinaemia, and reduced insulin-mediated glucose uptake in skeletal muscle. In addition, the isolated pancreatic islets from the MCFA-fed rats showed impaired GSIS and reduced protein kinase Ba (AKT1) protein expression and extracellular signal-related kinase isoforms 1 and 2 (ERK(1/2)) phosphorylation, which were accompanied by increased cellular death. Furthermore, there was a mildly increased cholinergic sensitivity to GSIS. We discuss these findings in further detail, and advocate that they might have a role in the mechanistic pathway leading to the compensatory hyperinsulinaemic status found in this animal model.
Resumo:
This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis.