35 resultados para Eucalyptus wood


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existem diversas técnicas para caracterização do módulo de elasticidade de madeiras e, dentre as atualmente empregadas, destacam-se aquelas que utilizam as frequências naturais de vibração, por serem técnicas não destrutivas e, portanto, apresentarem resultados que podem ser repetidos e comparados ao longo do tempo. Este trabalho teve como objetivo avaliar a eficácia, dos métodos de ensaios baseados nas frequências naturais de vibração comparando-os aos resultados obtidos na flexão estática na obtenção das propriedades elásticas em peças estruturais de madeira de reflorestamento que são usualmente empregadas na construção civil. Foram avaliadas 24 vigas de Eucalyptus sp. com dimensões nominais (40 x 60 x 2.000 mm) e 14 vigas de Pinus oocarpa com dimensões nominais (45 x 90 x 2.300 mm), ambas sem tratamento; 30 pranchas com dimensões nominais (40 x 240 x 2.010 mm) e 30 pranchas com dimensões nominais (40 x 240 x 3.050 mm), ambas de Pinnus oocarpa e com tratamento preservativo à base de Arseniato de Cobre Cromatado - CCA. Os resultados obtidos apresentaram boa correlação quando comparados aos resultados obtidos pelo método mecânico de flexão estática, especialmente quando empregada a frequência natural de vibração longitudinal. O emprego da frequência longitudinal mostrou-se confiável e prático, portanto recomendada para a determinação do módulo de elasticidade de peças estruturais de madeira. Verificou-se ainda que, empregando a frequência longitudinal, não há necessidade de um suporte específico para os corpos de prova ou calibrações prévias, reduzindo assim o tempo de execução e favorecendo o ensaio de grande quantidade de amostras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is a material of great applicability in construction, with advantageous properties to form various structural systems, such as walls and roof. Most of the roof structural systems follow models that have remained unchanged for a long time. A roof modular system in distinguished materials is proposed: reforested wood (Pine), oriented strand board (OSB) and roof tiles made of recycled long-life packaging material in order to be applied in rural construction. In this alternative, besides the benefit of giving destination packages with long-life thermal comfort, it also highlights the use of reforestated wood being the cultivation of such species that provides incentive for agribusiness. The structural performance of this alternative was evaluated through computer modeling and test results of two modular panels. The analysis is based on the results of vertical displacements, deformations and stresses. A positive correlation between theoretical and experimental values was observed, indicating the model's feasibility for use in roof structures. Therefore, the modular system represents a solution to new architecture conceptions to rural construction, for example, storage construction, cattle handling and poultry, with benefits provided by prefabricated building systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro organogenesis of woody species plays an essential role in the improvement of forest products by providing saplings with high commercial value. Furthermore, mineral nutrition plays an important role in the induction of organogenic responses. The objective of this study was to evaluate the effects of boron and calcium in the organogenesis of nodal segments from seedlings of Eucalyptus grandis growing under in vitro conditions. The concentration of boron and calcium in MS medium was modified to induce organogenic responses in 45-day-old nodal segments used as explants. After 60 days, the fresh weight, dry weight, ratio of fresh and dry weight, relative water content and relative matter content accumulated by the explants were evaluated. The concentrations of boron and calcium in the culture medium influenced the in vitro organogenic control of Eucalyptus grandis. Reduced combinations of boron and calcium induced callus formation and dry matter accumulation in the explants. A boron concentration of 100% (1.10 mg L-1) combined with 100% (119.950 mg L-1) and 200% (239.900 mg L-1) of calcium, and 200% (2.20 mg L-1) of boron combined with 100% (119.950 mg L-1) of calcium allowed the induction of well-developed buds, which can be used for the regeneration of micro-plants.