43 resultados para DIET-INDUCED ATHEROSCLEROSIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we evaluated the effects of obesity and insulin resistance induced by a high-fat diet on prostate morphophysiology, focusing on cell proliferation, expression of androgen (AR) and estrogen receptors (ER) and proteins of the insulin signaling pathway. Adult male Wistar rats were fed a high-fat diet (20% fat) for 15 weeks, whereas control animals received a balanced diet (4% fat). Both groups were then divided and treated for 2 weeks with 1 mg/kg body weight/day of the aromatase inhibitor letrozole or vehicle only. The ventral prostate was analyzed with immunohistochemical, histopathological, stereological, and Western blotting methods. Obese rats showed insulin resistance, hyperinsulinemia, and reduced plasma testosterone levels. The incidence of prostatic intraepithelial neoplasia (PIN) was 2.7 times higher in obese rats and affected 0.4% of the gland compared with 0.1% PIN areas found in control rats. Obesity doubled cell proliferation in both prostate epithelium and stroma. AR content decreased in the prostate of obese rats and estrogen receptor beta (ER beta) increased in this group. Protein levels of insulin receptor substrate 1 and protein kinase B diminished in the obese group, whereas phosphatidylinositol 3-kinase (PI3K) increased significantly. Most structural changes observed in the prostate of obese rats normalized after letrozole treatment, except for increased stromal cell proliferation and ER beta expression, which might be associated with insulin resistance. This experimental model of obesity and insulin resistance induced by a high-fat diet increases cell proliferation in rat prostate. Such alterations are associated with decreased levels of AR and increased ER beta and PI3K proteins. This change can facilitate the establishment of proliferative lesions in rat prostate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the effects of hypercholesterolemic diet on the collagen composition of urinary bladder wall. Materials and methods: Forty-five female 4-week-old Wistar rats were divided into three groups: 1) control group fed a normal diet (ND); 2) model of bladder outlet obstruction (BOO) group fed a ND; and 3) group fed a HCD (1.25% cholesterol). Total serum cholesterol, LDL cholesterol and body weight were assessed at baseline. Four weeks later, group 2 underwent a surgical procedure resulting in a partial BOO, while groups 1 and 3 underwent a sham similar surgical procedure. Six weeks later, all animals had their bladders removed; serum cholesterol and LDL cholesterol levels and body weights were measured. Morphological and morphometric analysis was performed by Picrosirius staining and collagen types I and III were identified by immunofluorescence. Statistical analysis was completed and significance was considered when p<0.05. Results: Rats fed an HCD exhibited a significant increase in LDL cholesterol levels (p<0.001) and body weight (p=0.017), when compared to the groups fed a ND during the ten-week study period. Moreover, the HCD induced morphological alterations of the bladder wall collagen, regarding thin collagen fibers and the amounts of type III collagen when compared to the control group (p=0.002 and p=0.016, respectively), resembling the process promoted in the BOO model. Conclusions: A hyper-cholesterolemic diet in Wistar rats promoted morphological changes of the bladder types of collagen, as well as increases in body weight and LDL cholesterol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate whether differences in diet and in single-nucleotide polymorphisms (SNPs) found in paraoxonase-1 (PON-1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cholesterol ester transfer protein (CETP) and apolipoprotein E (APOE) genes, are associated with oxidative stress biomarkers and consequently with susceptibility of low-density cholesterol (LDL) to oxidation. A multivariate approach was applied to a group of 55 patients according to three biomarkers: plasma antioxidant activity, malondialdehyde and oxidized LDL (oxLDL) concentrations. Individuals classified in Cluster III showed the worst prognoses in terms of antioxidant activity and oxidative status. Individuals classified in Cluster I presented the lowest oxidative status, while individuals grouped in Cluster II presented the highest levels of antioxidant activity. No difference in nutrient intake was observed among the clusters. Significantly higher gamma- and delta-tocopherol concentrations were observed in those individuals with the highest levels of antioxidant activity. No single linear regression was statistically significant, suggesting that mutant alleles of the SNPs selected did not contribute to the differences observed in oxidative stress response. Although not statistically significant, the p value of the APO E coefficient for oxLDL response was 0.096, indicating that patients who carry the TT allele of the APO E gene tend to present lower plasma oxLDL concentrations. Therefore, the differences in oxidative stress levels observed in this study could not be attributed to diet or to the variant alleles of PON-1, CETP, HMGCR or APO E. This data supports the influence of gamma-tocopherol and delta-tocopherol on antioxidant activity, and highlights the need for further studies investigating APO E alleles and LDL oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain amino acids, such as leucine (Leu) are not only substrates for protein synthesis but also are important regulators of protein metabolism. Moreover, it is known that alterations in intrauterine growth favor the development of chronic diseases in adulthood. Therefore, we investigated the role of Leu in combination with other BCAA on effects that are induced by maternal protein restriction on fetal growth. Wistar rats were divided into 4 groups according to the diet provided during pregnancy: control (C; 20% casein); V+I [5% casein + 2% L-valine (Val) + 2% L-isoleucine (Ile)1; KYT 15% casein + 1.8% L-lysine (Lys) + 1.2% L-tyrosine (Tyr) + 1% L-threonine (Thr)1; and BCAA (5% casein + 1.8% L-Leu + 1.2% L-Val + 1% L-Ile). Maternal protein restriction reduced the growth and organ weight of the offspring of dams receiving the V+I and KYT diets compared with the C group. Supplementation with BCAA reversed this growth deficit, minimizing the difference or restoring the mass of organs and carcass fat, the liver and muscle protein, and the RNA concentrations compared with newborns in the C group (P < 0.05). These effects could be explained by the activation of the mTOR signaling pathway, because phosphorylation of 4E-BP1 in the liver of offspring of the BCAA group was greater than that in the C, V+I, and KYT groups. The present results identify a critical role for Leu in association with other BCAA in the activation of the mTOR signaling pathway for the control of altered intrauterine growth induced by a maternal low-protein diet. J. Nutr. 142: 924-930, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A decrease in the number of cardiovascular events in patients with rheumatoid arthritis or psoriasis treated with methotrexate (MTX) has been observed in the literature. The aim of this study was to test whether MTX could promote anti-inflammatory effects and reduce the atherosclerotic lesions in rabbits with atherosclerosis induced by cholesterol feeding. Twenty male New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30 of cholesterol feeding, 10 animals were treated with 4 weekly intravenous injections of MTX (4 mg/kg) and 10 with 4 weekly saline solution injections for 30 days. MTX reduced the size of the lesion areas of cholesterol-fed animals by 75% and intima-media ratio 2- fold. The drug inhibited macrophage migration into the intima by 50% and the presence of apoptotic cells by 84% but did not inhibit the intimal proliferation of smooth muscle cells. MTX treatment also diminished the positive staining area of metalloproteinase 9 in the intima, which is probably beneficial. In the tumor necrosis factor-alpha-treated human umbilical vein endothelial cell line, incubation with MTX led to downregulation of 5 pro-inflammatory genes, TNF-alpha, VAP-1, IL-1 beta, CXCL2, and TLR2, and upregulation of the antiinflammatory TGF-beta 1 gene, thus showing endothelium-protective properties. In conclusion, MTX showed direct in vivo anti-atherosclerotic action and may have potential in the treatment of this disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or omega-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-alpha) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-alpha concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-alpha as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atherosclerosis and vascular calcification (VC) progression in chronic kidney disease is favored by disturbances of mineral metabolism. We compared the effect of phosphate binder lanthanum (La) carbonate with sevelamer-HCl on atherosclerosis, VC and bone structure and function in mice with chronic renal failure (CRF). Apolipoprotein E-deficient (apoE(-/-)) mice were randomized to one non-CRF and three CRF groups, fed with standard diet (one non-CRF and one CRF) or diet supplemented with either 3% lanthanum carbonate (La3%) or 3% sevelamer-HCl (Sev3%). Both La3% and Sev3% supplemented CRF mice displayed a decrease of serum phosphorus, calcification at both intimal and medial aortic sites and atherosclerosis. This was associated with a reduction of plaque Type I collagen expression by both binders and of positive nitrotyrosine staining in response to sevelamer-HCl only. Increased mineral apposition and bone formation rates in unsupplemented CRF mice were reduced by Sev3% but not by La3%. The beneficial effects of La carbonate and sevelamer-HCl on the progression of VC and atherosclerosis in CRF mice could be mainly due to a decrease in phosphate retention and likewise a reduction of arterial Type I collagen expression. The effect of La carbonate differed from that of sevelamer-HCl in that it did not appear to exert its vascular effects via changes in oxidative stress or bone remodeling in the present model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Aim Oxidative stress has been implicated in the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Vitamin C and vitamin E are known to react with reactive oxygen species (ROS) blocking the propagation of radical reactions in a wide range of oxidative stress situations. The potential therapeutic efficacy of antioxidants in NAFLD is unknown. The aim of this study was to evaluate the role of antioxidant drugs (vitamin C or vitamin E) in its prevention. Methods Fatty liver disease was induced in Wistar rats by choline-deficient diet for four weeks. The rats were randomly assigned to receive vitamin E (n = 6) – (200 mg/day), vitamin C (n = 6) (30 mg/Kg/day) or vehicle orally. Results In the vehicle and vitamin E-treated rats, there were moderate macro and microvesicular fatty changes in periportal area without inflammatory infiltrate or fibrosis. Scharlach stain that used for a more precise identification of fatty change was strong positive. With vitamin C, there was marked decrease in histological alterations. Essentially, there was no liver steatosis, only hepatocellular ballooning. Scharlach stain was negative. The lucigenin-enhanced luminescence was reduced with vitamin C (1080 ± 330 cpm/mg/minx103) as compared to those Vitamin E and control (2247 ± 790; 2020 ± 407 cpm/mg/minx103, respectively) (p < 0.05). Serum levels of aminotransferases were unaltered by vitamin C or vitamin E. Conclusions 1) Vitamin C reduced oxidative stress and markedly inhibited the development of experimental liver steatosis induced by choline-deficient diet ; 2)Vitamin E neither prevented the development of fatty liver nor reduced the oxidative stress in this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: The excessive intake of vitamin A in the form of vitamin concentrate, supplement or vitamin-rich liver can result in hypervitaminosis A in man and animals. Although osteopathologies resulting from chronic vitamin A intoxication in cats are well characterized, no information is available concerning feline hypervitaminosis A-induced liver disease. Clinical summary: We report the first case of hepatic stellate cell lipidosis and hepatic fibrosis in a domestic cat that had been fed a diet based on raw beef liver. Radiographic examination revealed exostoses and ankylosis between vertebrae C1 and T7, compatible with deforming cervical spondylosis. Necropsy showed a slightly enlarged and light yellow to bronze liver. Microscopic and ultrastructural analyses of liver tissues revealed diffuse and severe liver fibrosis associated with hepatic stellate cell hyperplasia and hypertrophy. These cells showed immunopositive staining for α-smooth muscle actin and desmin markers. The necropsy findings of chronic liver disease coupled with osteopathology supported the diagnosis of hypervitaminosis A. Practical relevance: As in human hepatology, if there is dietary evidence to support increased intake of vitamin A, then hypervitaminosis A should be considered in the differential diagnosis of chronic liver disease in cats.