52 resultados para Czech Republic
Resumo:
A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 degrees to +15 degrees in declination using four different energy ranges above 1 EeV (10(18) eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.
Resumo:
A systematic study is presented for centrality, transverse momentum (p(T)), and pseudorapidity (eta) dependence of the inclusive charged hadron elliptic flow (v(2)) at midrapidity (vertical bar eta vertical bar < 1.0) in Au + Au collisions at root s(NN) = 7.7, 11.5, 19.6, 27, and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and four-particle cumulants (v(2){4}), are presented to investigate nonflow correlations and v(2) fluctuations. We observe that the difference between v(2){2} and v(2){4} is smaller at the lower collision energies. Values of v(2), scaled by the initial coordinate space eccentricity, v(2)/epsilon, as a function of p(T) are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (root s(NN) = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at root s(NN) = 2.76 TeV). The v(2)(pT) values for fixed pT rise with increasing collision energy within the pT range studied (<2 GeV/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v(2)(pT). We also compare the v(2) results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at beam energy scan energies are discussed.
Resumo:
The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at forward rapidity, 2.5 < y < 4, in pp and Pb-Pb collisions at root s(NN) = 2.76 TeV. The p(t)-differential inclusive cross section of muons from heavy-flavor decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of p(t) and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3-4 is observed in 6 < p(t) < 10 GeV/c. The suppression shows no significant p(t) dependence.
Resumo:
The differential cross section for the production of direct photons in p + p collisions at root s = 200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive direct photons were measured in the transverse momentum range from 5: 5-25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x(T), the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.
Resumo:
The production of K*(892)(0) and phi(1020) in pp collisions at root s = 7 TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d(2)N/dydp(T) at midrapidity vertical bar y vertical bar < 0.5 in the range 0 < p(T) < 6 GeV/c for K*(892)(0) and 0.4 < p(T) < 6 GeV/c for phi(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at root s = 7 TeV, the ratios K*/K-, phi/K*, phi/ K-, phi/pi(-), and (Omega + <(Omega)over bar>)/phi are presented. The values of the K*/K-, phi/K* and phi/K- ratios are similar to those found at lower centre-of-mass energies. In contrast, the phi/pi(-) ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The (Omega + (Omega) over bar)/phi ratio in the p(T) range 1-5 GeV/ c is found to be in good agreement with the prediction of the HIJING/B (B) over bar v2.0model with a strong colour field.
Resumo:
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.
Resumo:
Measurements of the sphericity of primary charged particles in minimum bias proton-proton collisions at root s = 0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is measured in the plane perpendicular to the beam direction using primary charged tracks with p(T) > 0.5 GeV/c in vertical bar eta vertical bar < 0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (N-ch) is reported for events with different p(T) scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low N-ch, whereas the event generators show an opposite tendency. The combined study of the sphericity and the mean p(T) with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
Resumo:
In this Letter we report the first results on pi(+/-), K-+/-, p, and (p) over bar production at midrapidity (vertical bar y vertical bar < 0.5) in central Pb-Pb collisions at root s(NN) = 2.76 TeV, measured by the ALICE experiment at the LHC. The p(T) distributions and yields are compared to previous results at root s(NN) = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with root s(NN), which in hydrodynamic models is expected as a consequence of the increasing particle density. While the K/pi ratio is in line with predictions from the thermal model, the p/pi ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.
Resumo:
Aims. Spectroscopic, polarimetric, and high spectral resolution interferometric data covering the period 1995-2011 are analyzed to document the transition into a new phase of circumstellar disk activity in the classical Be-shell star 48 Lib. The objective is to use this broad data set to additionally test disk oscillations as the basic underlying dynamical process. Methods. The long-term disk evolution is described using the V/R ratio of the violet and red emission components of H alpha and Br gamma, radial velocities and profiles of He I and optical metal shell lines, as well as multi-band BVRI polarimetry. Single-epoch broad-band and high-resolution interferometric visibilities and phases are discussed with respect to a classical disk model and the given baseline orientations. Results. Spectroscopic signatures of disk asymmetries in 48 Lib vanished in the late nineties but recovered some time between 2004 and 2007, as shown by a new large-amplitude and long-duration V/R cycle. Variations in the radial velocity and line profile of conventional shell lines correlate with the V/R behavior. They are shared by narrow absorption cores superimposed on otherwise seemingly photospheric He I lines, which may form in high-density gas at the inner disk close to the photosphere. Large radial velocity variations continued also during the V/R-quiet years, suggesting that V/R may not always be a good indicator of global density waves in the disk. The comparison of the polarization after the recovery of the V/R activity shows a slight increase, while the polarization angle has been constant for more than 20 years, placing tight limits on any 3-D precession or warping of the disk. The broad H-band interferometry gives a disk diameter of (1.72 +/- 0.2) mas (equivalent to 15 stellar radii), position angle of the disk (50 +/- 9)degrees and a relatively low disk flattening of 1.66 +/- 0.3. Within the errors the same disk position angle is derived from polarimetric observations and from photocenter shifts across Br gamma. The high-resolution interferometric visibility and phase profiles show a double or even multiple-component structure. A preliminary estimate based on the size of the Br gamma emitting region indicates a large diameter for the disk (tens of stellar radii). Overall, no serious contradiction between the observations and the disk-oscillation model could be construed.
Resumo:
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants nu(2) (nu(2){2} and nu(2){4}) for Au + Au and Cu + Cu collisions at center-of-mass energies root S-NN = 62.4 and 200 GeV. The difference between nu(2){2}(2) and nu(2){4}(2) is related to nu(2) fluctuations (sigma(nu 2)) and nonflow (delta(2)). We present an upper limit to sigma(nu 2)/nu 2. Following the assumption that eccentricity fluctuations sigma(epsilon) dominate nu(2) fluctuations nu(2)/sigma nu(2) approximate to epsilon/sigma epsilon we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with nu(2){2} and nu(2){4}. We also present results on the ratio of nu(2) to eccentricity.
Resumo:
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
Resumo:
The P-T-differential inclusive production cross section of the prompt charm-strange meson D-s(+) in the rapidity range vertical bar y vertical bar < 0.5 was measured in proton-proton collisions at root s = 7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98 x 10(8) events collected with a minimum-bias trigger. The corresponding integrated luminosity is L-int = 4.8 nb(-1). Reconstructing the decay D-s(+) -> phi pi(+) with phi -> K-K+, and its charge conjugate, about 480 D-s(+/-) mesons were counted, after selection cuts, in the transverse momentum range 2 < P-T < 12 GeV/c. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely D-0, D+, D*+ and D-s(+)) were determined both as a function of p(T) and integrated over p(T)after extrapolating to full p(T) range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e(+)e(-), ep and pp interactions at various centre-of-mass energies. (C) 2012 CERN. Published by Elsevier By. All rights reserved.
Resumo:
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301
Resumo:
STAR's measurements of directed flow (v(1)) around midrapidity for pi(+/-), K-+/-, K-S(0), p, and (p) over bar in Au + Au collisions at root s(NN) = 200 GeV are presented. A negative v(1) (y) slope is observed for most of produced particles (pi(+/-), K-+/-, K-S(0), p, and (p) over bar). In 5%-30% central collisions, a sizable difference is present between the v(1)(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v(1) excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v(1) for both pions and protons, none of them can describe v(1()y) forpions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v(1)(y) slopes of protons and antiprotons.
Resumo:
The production of the prompt charm mesons D-0, D+, D*(+), and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy root s(NN) = 2.76 TeV per nucleon-nucleon collision. The p(t)-differential production yields in the range 2 < p(t) < 16 GeV/c at central rapidity, vertical bar y vertical bar < 0.5, were used to calculate the nuclear modification factor R-AA with respect to a proton-proton reference obtained from the cross section measured at root s = 7 TeV and scaled to root s = 2.76 TeV. For the three meson species, R-AA shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions.