37 resultados para CYTOSOLIC GLUTATHIONE-PEROXIDASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H2O2) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a selective fungus in the wood delignification and the most promising in biopulping. Through the lipid peroxidation initiated by manganese peroxidase (MnP), free radicals can be generated, which can act in the degradation of lignin nonphenolic structures. This work evaluated the prooxidant activity (based in lipid peroxidation) of enzymatic extracts from wood biodegradation by this fungus in cultures containing exogenous calcium, oxalic acid or soybean oil. It was observed that MnP significant activity is required to promote lipid peroxidation and wood delignification. Positive correlation between prooxidant activity x MnP was observed up to 300 IU kg-1 of wood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

'Golden' papayas at maturity stage 1 (15% yellow skin) were chosen to study selected oxidative processes, the activity of antioxidant enzymes and lipid peroxidation in storage at 22°C, during the ripening of the fruit. An increase in ethylene production was observed on the second day of storage and it was followed by an increase in respiration. An increased activity of catalase, glutathione reductase and ascorbate peroxidase was observed concurrently or soon after this increase in ethylene production and respiration. The increased activity of these enzymes near the peaks of ethylene production and respiration is related to the production of oxidants accompanying the onset of ripening. On the fourth day of storage, there was an increased lipid peroxidation and decreased activities of catalase, glutathione reductase and superoxide dismutase. Lipid peroxidation induces the increase of antioxidant enzymes, which can be verified by further increases in the activities of catalase, glutathione reductase, superoxide dismutase and ascorbate peroxidase. Unlike the other antioxidant enzymes, the ascorbate peroxidase activity in the pulp increased continuously during ripening, suggesting its important role in combating reactive oxygen species during papaya ripening. With regard to physical-chemical characteristics, the soluble solids did not vary significantly, the acidity and ascorbic acid contents increased, and hue angle and firmness decreased during storage. The results revealed that there was variation in the activity of antioxidant enzymes, with peaks of lipid peroxidation during the ripening of 'Golden' papaya. These results provide a basis for future research, especially with regard to the relationships among the climacteric stage, the activation of antioxidant enzymes and the role of ascorbate peroxidase in papaya ripening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of aluminum (Al) on the activities of antioxidant enzymes and ferritin expression were studied in cell suspension cultures of two varieties of Coffea arabica, Mundo Novo and Icatu, in medium with pH at 5.8. The cells were incubated with 300 µM Al3+, and the Al speciation as Al3+ was 1.45% of the mole fraction. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were increased in Mundo Novo, whereas glutathione reductase (GR) and guaiacol peroxidase (GPOX) activities remained unchanged. SOD, GR, and GST activities were increased in Icatu, while CAT activity was not changed, and GPOX activity decreased. The expression of two ferritin genes (CaFer1 and CaFer2) were analyzed by Real-Time PCR. Al caused a downregulation of CaFER1 expression and no changes of CaFER2 expression in both varieties. The Western blot showed no alteration in ferritin protein levels in Mundo Novo and a decrease in Icatu. The differential enzymes responses indicate that the response to Al is variety-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyroptosis is a molecularly controlled form of cell death that exhibits some features of apoptosis as well of necrosis. Pyroptosis is induced by inflammasome-activated caspase-1 or caspase-11 (caspase-4 in humans), as a result of distinct pathogenic or damage stimuli. Although pyroptosis displays some morphological and biochemical features of apoptosis, it has an inflammatory outcome due to the loss of plasma membrane integrity and the consequent release of intracellular contents, reminiscent to necrosis. Here, we use cytosolic delivery of purified flagellin as an experimental tool to trigger pyroptosis and describe potential methods to study this form of cell death. Finally, we discuss the advantages and limitations of these methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1β/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1β secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1β production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages