94 resultados para ATLANTIC FOREST OF BRAZIL
Resumo:
The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C(plant):C(soil)) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C (soil) (-b) ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii.
Resumo:
Mosquitoes are vectors of arboviruses that can cause encephalitis and hemorrhagic fevers in humans. Aedes serratus (Theobald), Aedes scapularis (Rondani) and Psorophora ferox (Von Humboldt) are potential vectors of arboviruses and are abundant in Vale do Ribeira, located in the Atlantic Forest in the southeast of the State of Sao Paulo, Brazil. The objective of this study was to predict the spatial distribution of these mosquitoes and estimate the risk of human exposure to mosquito bites. Results of the analyses show that humans are highly exposed to bites in the municipalities of Cananeia, Iguape and Ilha Comprida. In these localities the incidence of Rocio encephalitis was 2% in the 1970s. Furthermore, Ae. serratus, a recently implicated vector of yellow fever virus in the State of Rio Grande do Sul, should be a target for the entomological surveillance in the southeastern Atlantic Forest. Considering the continental dimensions of Brazil and the inherent difficulties in sampling its vast area, the habitat suitability method used in the study can be an important tool for predicting the distribution of vectors of pathogens.
Resumo:
The identification of northern and southern components in different vertebrate species led researchers to accept a two-component hypothesis for the Brazilian Atlantic forest (BAF). Nevertheless, neither a formal proposal nor a meta-analysis to confirm this coincidence was ever made. Our main objective here was therefore to systematically test in how many vertebrate components the BAF could be divided by analysing existing empirical data. We used two approaches: (1) mapping and comparing the proposed areas of vertebrate endemism in the BAF and (2) analysing studies mentioning spatial subdivisions in distinct forest-dependent vertebrates within the biome, by the use of panbiogeography. The four large-scale endemism area components together with the six small-scale panbiogeographical ones allowed the definition of three BAF greater regions, subdivided into nine vertebrate components, latitudinally and longitudinally organized. Empirical time estimates of the diversification events within the BAF were also reviewed. Diversification of these vertebrates occurred not only in the Pleistocene but also throughout the Miocene. Our results confirm the BAF's complex history, both in space and time. We propose that future research should be small-scale and focused in the vertebrate components identified herein. Given the BAF's heterogeneity, studying via sections will be much more useful in identifying the BAF's historical biogeography. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107, 39-55.
Resumo:
In the present study, mitochondrial (mt)DNA sequence data were used to examine the genetic structure of fire-eye antbirds (genus Pyriglena) along the Atlantic Forest and the predictions derived from the river hypothesis and from a Last Glacial Maximum Pleistocene refuge paleomodel were compared to explain the patterns of genetic variation observed in these populations. A total of 266 individuals from 45 populations were sampled over a latitudinal transect and a number of phylogeographical and population genetics analytical approaches were employed to address these questions. The pattern of mtDNA variation observed in fire-eye antbirds provides little support for the view that populations were isolated by the modern course of major Atlantic Forest rivers. Instead, the data provide stronger support for the predictions of the refuge model. These results add to the mounting evidence that climatic oscillations appear to have played a substantial role in shaping the phylogeographical structure and possibly the diversification of many taxa in this region. However, the results also illustrate the potential for more complex climatic history and historical changes in the geographical distribution of Atlantic Forest than envisioned by the refuge model. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 900824.
Resumo:
Productive and reproductive traits of beehives are influenced by climate and food availability in the region where the bees are reared or maintained, thus honey and pollen storage, egg-laying conditions of the queen as well as comb occupation are subject to seasonal variations. The present study was conducted in the apiary of the Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, ESALQ/USP, in the municipality of Piracicaba, in an area containing fruit trees, ornamental plants and a fragment of a native forest. The objective was to identify protein sources used by honeybees (Apis mellifera) over a whole year (2010-2011) in remnants of the Atlantic forest, information that can be used in the conservation and restoration of degraded areas. For sample preparation, the acetolysis method was adopted (Eredtman 1952) and the quantitative analysis was performed by counting successive samples of 900 grains per sample which were grouped by botanical species and/or pollen types. The results show that the bees used various plant types in the area, including ruderal species, to maintain their colonies. Apis mellifera seeks food sources in all plants in the surroundings of the apiary, including herbaceous, shrubs, trees, native or introduced. Eucalyptus sp. played an important role as a food source in all seasons due to its wide availability around the apiary and its high flower production. The most frequent pollen types (greater than 10% of the sample) were Anadenanthera sp., Acacia sp, Miconia sp. and Eucalyptus sp. in winter; Philodendron sp., Mikania cordifolia, Parthenium and Eucalyptus sp. in spring; Alternanthera ficoidea, Chamissoa altissima and Eucalyptus sp. in summer; Philodendron sp., Raphanus sp. and Eucalyptus sp. in autumn.
Resumo:
Background: The most substantial and best preserved area of Atlantic Forest is within the biogeographical sub-region of Serra do Mar. The topographic complexity of the region creates a diverse array of microclimates, which can affect species distribution and diversity inside the forest. Given that Atlantic Forest includes highly heterogeneous environments, a diverse and medically important Culicidae assemblage, and possible species co-occurrence, we evaluated mosquito assemblages from bromeliad phytotelmata in Serra do Mar (southeastern Brazil). Methods: Larvae and pupae were collected monthly from Nidularium and Vriesea bromeliads between July 2008 and June 2009. Collection sites were divided into landscape categories (lowland, hillslope and hilltop) based on elevation and slope. Correlations between bromeliad mosquito assemblage and environmental variables were assessed using multivariate redundancy analysis. Differences in species diversity between bromeliads within each category of elevation were explored using the Renyi diversity index. Univariate binary logistic regression analyses were used to assess species co-occurrence. Results: A total of 2,024 mosquitoes belonging to 22 species were collected. Landscape categories (pseudo-F value = 1.89, p = 0.04), bromeliad water volume (pseudo-F = 2.99, p = 0.03) and bromeliad fullness (Pseudo-F = 4.47, p < 0.01) influenced mosquito assemblage structure. Renyi diversity index show that lowland possesses the highest diversity indices. The presence of An. homunculus was associated with Cx. ocellatus and the presence of An. cruzii was associated with Cx. neglectus, Cx. inimitabilis fuscatus and Cx. worontzowi. Anopheles cruzii and An. homunculus were taken from the same bromeliad, however, the co-occurrence between those two species was not statistically significant. Conclusions: One of the main findings of our study was that differences in species among mosquito assemblages were influenced by landscape characteristics. The bromeliad factor that influenced mosquito abundance and assemblage structure was fullness. The findings of the current study raise important questions about the role of An. homunculus in the transmission of Plasmodium in Serra do Mar, southeastern Atlantic Forest.
Resumo:
There is now an extensive literature on extinction debt following deforestation. However, the potential for species credit in landscapes that have experienced a change from decreasing to expanding forest cover has received little attention. Both delayed responses should depend on current landscape forest cover and on species life-history traits, such as longevity, as short-lived species are likely to respond faster than long-lived species. We evaluated the effects of historical and present-day local forest cover on two vertebrate groups with different longevities understorey birds and non-flying small mammals - in forest patches at three Atlantic Forest landscapes. Our work investigated how the probability of extinction debt and species credit varies (i) amongst landscapes with different proportions of forest cover and distinct trajectories of forest cover change, and (ii) between taxa with different life spans. Our results suggest that the existence of extinction debt and species credit, as well as the potential for their future payment and/or receipt, is not only related to forest cover trajectory but also to the amount of remaining forest cover at the landscape scale. Moreover, differences in bird and small mammal life spans seem to be insufficient to affect differently their probability of showing time-delayed responses to landscape change. Synthesis and applications. Our work highlights the need for considering not only the trajectory of deforestation/regeneration but also the amount of forest cover at landscape scale when investigating time-delayed responses to landscape change. As many landscapes are experiencing a change from decreasing to expanding forest cover, understanding the association of extinction and immigration processes, as well as their interactions with the landscape dynamic, is a key factor to plan conservation and restoration actions in human-altered landscapes.
Resumo:
With fast growth rates and clonal reproduction, bamboos can rapidly invade forest areas, drastically changing their original structure. In the Brazilian Atlantic Forest, where recent mapping efforts have shown that woody bamboos dominate large areas, the present study assessed the differences in soil and vegetation between plots dominated (>90% of bamboo coverage) and not dominated (<10% of coverage) by the native Guadua tagoara. Surface soil was physically and chemically analyzed, and trees at three size classes (seedling, sapling, and adult) were counted, identified and measured. New inventories were conducted to assess recruitment, mortality, and damage rates. Bamboo plots had more fertile soils (higher bases saturation and lower potential acidity) due to the preferential occurrence of G. tagoara on more clayey soils. Bamboo-dominated plots had lower density of adult trees (diameter >5 cm) and lower species density. In addition, overall tree diameter distribution was very different between environments, with bamboo plots having greater concentration of small-sized trees. Such differences are probably related to the general tendency of higher mortality, recruitment, and damage rates in bamboo plots. Greater physical (wind and bamboo-induced damages) and physiological stress (heat and light) in bamboo plots are probable causes of bamboo-dominated plots being more dynamic. Finally, we discuss the differences between Atlantic and Amazonian Guadua-dominated forests, causes, and possible consequences of bamboo overabundance to the Atlantic Forest conservation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Brazilian Atlantic forest has been an excellent laboratory for investigations regarding tropical forest ecology and the fragility of tropical ecosystems in face of human disturbances. In this article, we present a synthesis about the spatial distribution of Atlantic forest biodiversity and forest response to human disturbances, as well as the ongoing conservation efforts based on a review of several investigations in this biota. In general, studies have documented an uneven distribution of biodiversity throughout the Atlantic forest region, revealing alarming rates of habitat loss at low altitudes, while protected areas concentrate at higher altitudes. It has been suggested that the remaining forest habitat is moving towards an early-successional systems across human-modified landscapes. Such regressive forest succession increases the threats for several animals and plant groups. Based on these findings, we propose seven guidelines in order to enhance the provision of ecosystem services and the conservation value of human-modified landscapes, reducing the species extinction risk in the Atlantic forest and in other irreplaceable tropical biotas.
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Two new genera and species of Pteronemobiini crickets (Grylloidea: Trigonidiidae: Nemobiinae) are described from southern Brazilian Atlantic Forest: Kevanemobius paulistorum gen. n. et sp. n., and Pepoyara jagoi gen. n. et sp. n. The position of these genera among other Pteronemobiini is briefly discussed.
Resumo:
High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.
Resumo:
The Atlantic Forest is one of the most threatened tropical biomes, with much of the standing forest in small (less than 50 ha), disturbed and isolated patches. The pattern of land-use and land-cover change (LULCC) which has resulted in this critical scenario has not yet been fully investigated. Here, we describe the LULCC in three Atlantic Forest fragmented landscapes (Sao Paulo, Brazil) between 1960-1980s and 1980-2000s. The three studied landscapes differ in the current proportion of forest cover, having 10%, 30% and 50% respectively. Between the 1960s and 1980s. forest cover of two landscapes was reduced while the forest cover in the third landscape increased slightly. The opposite trend was observed between the 1980s and 2000s: forest regeneration was greater than deforestation at the landscapes with 10% and 50% of forest cover and, as a consequence, forest cover increased. By contrast, the percentage of forest cover at the landscape with 30% of forest cover was drastically reduced between the 1980s and 2000s. LULCC deviated from a random trajectory, were not constant through time in two study landscapes and were not constant across space in a given time period. This landscape dynamism in single locations over small temporal scales is a key factor to be considered in models of LULCC to accurately simulate future changes for the Atlantic Forest. In general, forest patches became more isolated when deforestation was greater than forest regeneration and became more connected when forest regeneration was greater than deforestation. As a result of the dynamic experienced by the study landscapes, individual forest patches currently consist of a mosaic of different forest age classes which is likely to impact bio-diversity. Furthermore, landscape dynamics suggests the beginning of a forest transition in some Atlantic Forest regions, what could be of great importance for biodiversity conservation due to the potential effects of young secondary forests in reducing forest isolation and maintaining a significant amount of the original biodiversity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Blarinomys breviceps possesses cryptic and burrowing habits with poorly documented genetics and life history traits. Due to its rarity, only a few specimens and DNA sequences have been deposited in collections worldwide. Here, we present the most comprehensive cytogenetic and molecular characterization of this rare genus. Phylogenetic analyses based on partial cytochrome b sequences were performed, attempting to establish the relationships among individuals with distinct karyotypes along the geographic distribution of the genus in the Atlantic Forest. Classical and molecular cytogenetics, using banding patterns and FISH of telomeric and whole chromosome X-specific painting probes (obtained from the Akodontini Akodon cursor) were used to characterize and compare the chromosomal complements. Molecular phylogenetic analyses recovered 2 main geographically structured clades, northeastern and southeastern with pair-wise sequence divergences among specimens varying between 4.9 and 8.4%. Eight distinct karyomorphs are described: (A) 2n = 52 (50A, XX), (B) 2n = 52 (48A, XY+2Bs), (C) 2n = 45 (42A, XY+1B), (D) 2n = 43 (37A, XX+4Bs), (E) 2n = 37 (34A, XY+1B), (F) 2n = 34 (32A, XX), (G) 2n = 31 (27A, XX+2Bs), (H) 2n = 28 (26A, XY), all with the same number of autosomal arms (FNA = 50). Variation of 0-4 supernumerary chromosomes (Bs) presenting heterogeneity in morphology and distribution of interstitial telomeric sequences (ITSs) is reported. ITSs are also found in some metacentric autosomes. The phylogeographic separation between 2 major lineages with high levels of genetic divergence, and the wide karyotypic diversity indicate that B. breviceps is a diverse group that warrants taxonomic re-evaluation. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
The forest-like characteristics of agroforestry systems create a unique opportunity to combine agricultural production with biodiversity conservation in human-modified tropical landscapes. The cacao-growing region in southern Bahia, Brazil, encompasses Atlantic forest remnants and large extensions of agroforests, locally known as cabrucas, and harbors several endemic large mammals. Based on the differences between cabrucas and forests, we hypothesized that: (1) non-native and non-arboreal mammals are more frequent, whereas exclusively arboreal and hunted mammals are less frequent in cabrucas than forests; (2) the two systems differ in mammal assemblage structure, but not in species richness; and (3) mammal assemblage structure is more variable among cabrucas than forests. We used camera-traps to sample mammals in nine pairs of cabruca-forest sites. The high conservation value of agroforests was supported by the presence of species of conservation concern in cabrucas, and similar species richness and composition between forests and cabrucas. Arboreal species were less frequently recorded, however, and a non-native and a terrestrial species adapted to open environments (Cerdocyon thous) were more frequently recorded in cabrucas. Factors that may overestimate the conservation value of cabrucas are: the high proportion of total forest cover in the study landscape, the impoverishment of large mammal fauna in forest, and uncertainty about the long-term maintenance of agroforestry systems. Our results highlight the importance of agroforests and forest remnants for providing connectivity in human-modified tropical forest landscapes, and the importance of controlling hunting and dogs to increase the value of agroforestry mosaics.