48 resultados para voltammetry of microparticles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urease (Urs) was immobilized in electrochemically prepared polypyrrole (PPy) and the resulting films were characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet visible spectroscopy (UV-VIS). The enzymatic activity of Urs entrapped in the PPy matrix was confirmed by the catalytic conversion of urea into carbon dioxide and ammonia, when urea was detected amperometrically at different concentrations in standard samples and commercial fertilizers. The PPy/Urs biosensors exhibited selectivity, a relatively high efficiency at urea concentrations below 3.0 mmol L-1, and a sensitivity to urea of 2.41 mu A cm(-2) mmol(-1) L (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the applicability of a Hg-electroplated-Pt ultramicroelectrode in the quantification of elemental sulphur in naphtha samples by square-wave voltammetry. A reproducible deposition methodology was studied and is reported in this paper. This methodology is innovative and relies on the quality of the mercury stock solution to obtain reproducible surfaces required for the analytical methodology. All analyses were performed using a Hg-electroplated-Pt ultramicroelectrode (Hg-Pt UME) due to the low sensibility of such devices to ohmic drops in resistive solutions. The responses of the peak areas in voltammetric experiments were linear in all of the range studied. The method developed here is accurate and reproducible, with a detection limit of 0.010 mg L-1 and a good recovery range for both standard solutions of elemental sulphur (85 to 99%) and real naphtha sample (79%). These results attest to the potential for the application of this electroanalytical methodology in determining elemental sulphur in naphtha samples containing mercaptans and disulphides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the electrochemical reduction of the azo dye Sudan III in methanol/0.01 mol l(-1) Bu4NBF4 at applied potential of -1.2V, which promotes 98% discoloration of the commercial sample. The reduction products were analyzed by high performance liquid chromatography, after optimized conditions for 20 aromatic amines with carcinogenic potentiality. The harmful compounds such as: aniline, benzidine, o-toluidine, 2,6-dimethylaniline, 4,4'-oxydianiline, 4,4'-metileno-bis-2-methylaniline and 4-aminobiphenyl are formed after azo bond cleavage. The electrochemical reduction is compared with chemical reduction by using sodium thiosulfate. Our findings illustrates that commercial Sudan III under reductive condition can forms a number of products, which some are known active genotoxins. The technique could be used to mimic important redox reactions in human metabolism or environment, highlighting the possible formation of by-products more toxic than the original dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inclusion compounds of Al-quercetin and Al-catechin complexes with beta-cyclodextrin (beta CD) were investigated. The complex and the inclusion compound of quercetin are more effective DPPHaEuro cent scavengers than the corresponding catechin compounds and the inclusion does not compromise their scavenging abilities, with only a slight decrease in the EC50 values. This is in accordance with the electrochemical data, which revealed that the inclusion compounds have lower diffusion coefficients in aqueous solution than the non-included compounds. For the quercetin compounds, some spectroscopic properties were also addressed by means of UV-visible and NMR measurements in aqueous media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lupulones, hops beta-acids, are one of the main constituents of the hops resin and have an important contribution to the overall bacteriostatic activity of hops during beer brewing. The use of lupulones as natural alternatives to antibiotics is increasing in the food industry and also in bioethanol production. However, lupulones are easy oxidizable and have been shown to be very reactive toward 1-hydroxyethyl radical with apparent bimolecular rate constants close to diffusion control k = 2.9 x 10(8) and 2.6 x 10(8) L mol(-1) s(-1) at 25.0 +/- 0.2 degrees C in ethanol water solution (10% of ethanol (v/v)) as probed by EPR and ESI-IT-MS/MS spin-trapping competitive kinetics, respectively. The free energy change for an electron-transfer mechanism is Delta G degrees = 106 kJ/mol as calculated from the oxidation peak potential experimentally determined for lupulones (1.1 V vs NHE) by cyclic voltammetry and the reported reduction potential for 1-hydroxyethyl radical. The major reaction products identified by LC-ESI-IT-MS/MS and ultrahigh-resolution accurate mass spectrometry (orbitrap FT-MS) are hydroxylated lupulone derivatives and 1-hydroxyethyl radical adducts. The lack of pH dependence for the reaction rate constant, the calculated free energy change for electron transfer, and the main reaction products strongly suggest the prenyl side chains at the hops beta-acids as the reaction centers rather than the beta,beta'-triketone moiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a study on the effects of the particle size, material concentration and radiation energy on the X-ray absorption. CuO nanoparticles and microparticles were incorporated separately into a polymeric resin in concentrations of 5%, 10% and 30% relative to the resin mass. X-ray absorption by these materials was analyzed with a CdTe detector. The X-ray absorption is higher for the nanostructured material compared to the microstructured one for low energy X-ray beams for all CuO concentrations. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caffeine determination using a fast-scan voltammetric procedure at a carbon fiber ultramicroelectrode (CF-UME) is described. The CF-UME was submitted to electrochemical pretreatment. Parameters such as number of acquisition cycles, scan rate, potential window, and the electrochemical surface pretreatment were optimized. Using the optimized conditions, it was possible to achieve a LDR from 10.0 up to 200 mu mol L-1, with a LOD of 3.33 mu mol L-1. The method has been applied in the determination of caffeine in commercial samples, with errors of 1.0-3.5% in relation to the label values and recoveries of 97-114% within the linear range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer electrolytes (PEs) are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Deoxyribonucleic acid (DNA) as an important biological macromolecule has electric conducting electrochemical properties and unique three dimensional structures. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying simultaneously high ionic conductivity we have produced in the present work, flexible films based on DNA, incorporating ionic liquids (ILs). Over the last decade ILs have been employed as a new media in electrochemistry and electroanalysis. The materials studied here have been characterized by means of Differential Scanning Calorimetry, Complex Impedance Spectroscopy and Cyclic Voltammetry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSAA (R)) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm(-2) is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the electrosynthesis of PVA-protected PtCo films (PVA = poly(vinylalcohol)) and their activities towards the oxygen reduction reaction (ORR). PtCo electrodeposits were potentiostatically obtained in the presence and absence of PVA at distinct potentials. The film morphology and composition were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), which revealed that the use of PVA in the electrodeposition of PtCo films was decisive to achieve better film composition control. Cyclic voltammetry for PVA-protected PtCo films showed that the electrochemical surface area is dependent on the electrodeposition potentials and suggested different adsorption strengths of oxygen-containing species. Films produced in the presence of PVA presented the following activity order towards ORR as a function of the electrodeposition potential (vs. Ag/AgCl): -0.9 V> -0.8 V> -1.0 V> -0.7 V. In contrast, PtCo films electrodeposited in the absence of PVA displayed very similar activities regardless of the electrodeposition potential. The simplicity of the electrodeposition method combined with its effectiveness enabled the production of "model electrodes" for investigating the fundamental aspects of the reactions taking place in the fuel cell cathodes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiwall carbon nanotube/silicone rubber (MWCNT/SR) composite electrode has been used for the determination of hydrochlorothiazide (HCTZ) in pharmaceutical formulations by differential pulse voltammetry (DPV). The electro-oxidation process was evaluated by cyclic voltammetry, from which it was observed that HCTZ presents an irreversible oxidation peak at 0.82 V vs. saturated calomel electrode (SCE) in the potential range from 0.5 to 1.1 V, in Britton-Robinson buffer pH 7.0 at MWCNT/SR. HCTZ was determined by DPV using a MWCNT/SR 70% (MWCNT, m/m) composite electrode after the optimization of the experimental parameters. The linear range was from 5.0 to 70.0 mu mol L-1, with a limit of detection (LOD) of 2.6 mu mol L-1. The HCTZ was determined in pharmaceutical formulations using the proposed composite electrode and the results agreed with those from the official high performance liquid chromatography (HPLC) method within 95% confidence level, according to the t-Student test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350 degrees C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm(-3), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.