84 resultados para vagus nerve stimulation
Resumo:
OBJETIVO: Avaliar o efeito da corrente catódica de alta voltagem sobre a dor em um modelo experimental de ciatalgia. MÉTODOS: Foram utilizados 16 ratos Wistar, machos, submetidos a um modelo de ciatalgia experimental no membro pélvico direito. Os sujeitos foram divididos em grupo simulacro (GS) e grupo tratado com corrente catódica (GP-) por 20 min diários durante 10 dias. O modelo de compressão foi realizado com amarria por fio catgut 4.0 cromado, em quatro pontos ao longo do nervo isquiático. A avaliação da nocicepção foi realizada, de forma funcional, com o tempo de elevação da pata (TEP), e à pressão, pelo limiar de retirada, via analgesímetro eletrônico. Os dados foram coletados antes do modelo de ciatalgia (AV1), três dias depois da compressão (antes, AV2, e após o tratamento, AV3), após o quinto dia de tratamento (AV4) e em seguida ao décimo dia de tratamento (AV5). RESULTADOS: Pela avaliação funcional, em ambos os grupos houve aumento da nocicepção, sem redução da mesma em qualquer momento da avaliação. À pressão, no entanto, o GS mostrou redução do limiar de retirada em todos os momentos, enquanto o GP- apresentou redução do limiar apenas inicialmente - em AV5 o limiar foi restaurado. CONCLUSÃO: Não houve alteração na nocicepção pela avaliação funcional; porém, à pressão, o tratamento com corrente catódica mostrou efeito com a somatória de terapias.
Resumo:
JUSTIFICATIVA E OBJETIVOS: A disfunção temporomandibular (DTM) é um termo que descreve um grupo de doenças que afetam funcionalmente o aparelho mastigatório, particularmente a musculatura mastigatória e a articulação temporomandibular (ATM). Tem etiologias múltiplas e tratamentos específicos, entre os quais a estimulação elétrica nervosa transcutânea (TENS). O objetivo deste artigo é o de revisar a literatura científica sobre o uso da TENS em pacientes com DTM. CONTEÚDO: Estudos epidemiológicos mostram que aproximadamente 75% da população apresentam algum sinal de DTM, enquanto 33% possuem ao menos um sintoma. Sempre que possível deve-se tratar a causa da dor, caso não se consiga estabelecer a sua etiologia, inicia-se com procedimentos menos invasivos e reversíveis, especialmente nos casos de dor e disfunção muscular. A terapia com TENS consiste na administração de corrente elétrica na superfície cutânea, de modo a relaxar os músculos hiperativos e promover o alívio da dor. CONCLUSÃO: Embora existam controvérsias quanto ao uso de TENS para o controle da dor crônica, seu uso na dor muscular mastigatória continua relevante. Entretanto, é fundamental o diagnóstico preciso para evitar uso inadequado. São necessários ainda estudos randomizados controlados que incluam amostras selecionadas para homogeneizar o uso de TENS em pacientes com DTM.
Resumo:
Objective: To analyze the efficiency of high voltage pulsed current (HVPC) with early application in three different sites, in the regeneration of the sciatic nerve in rats submitted to crush injury, the sciatic functional index (SFI) was used to assess the functional recovery. Methods: After crushing of the nerve, 57 animals were submitted to cathodal HVPC at frequency of 50Hz and voltage of 100V, 20 minutes per day, 5 days per week. The rats were divided into five groups: control group; ganglion group; ganglion + muscle group; muscle group; and sham group. The SFI was determined weekly for seven weeks, from the preoperative period to the 6th postoperative week. Results: Compared with the control group, the results showed a significantly better performance of group 2 for the first 3 weeks; group 3 showed significantly better performance in the third week; and group 4 showed a significantly negative performance during the 481 and 6th weeks. Conclusion: Early application of HVPC had a positive effect in the treatment of the spinal cord region and the sciatic nerve root ganglion with a dispersive electrode on the contralateral lumbar region or on the gastrocnemius. However, HVPC had a negative effect in the treatment with an active electrode on the gastrocnemius and a dispersive electrode on the contralateral thigh. Level of evidence II, Prospective comparative study.
Resumo:
Objective: Patients with high cervical spinal cord injury are usually dependent on mechanical ventilation support, which, albeit life saving, is associated with complications and decreased life expectancy because of respiratory infections. Diaphragm pacing stimulation (DPS), sometimes referred to as electric ventilation, induces inhalation by stimulating the inspiratory muscles. Our objective was to highlight the indications for and some aspects of the surgical technique employed in the laparoscopic insertion of the DPS electrodes, as well as to describe five cases of tetraplegic patients submitted to the technique. Methods: Patient selection involved transcutaneous phrenic nerve studies in order to determine whether the phrenic nerves were preserved. The surgical approach was traditional laparoscopy, with four ports. The initial step was electrical mapping in order to locate the "motor points" (the points at which stimulation would cause maximal contraction of the diaphragm). If the diaphragm mapping was successful, four electrodes were implanted into the abdominal surface of the diaphragm, two on each side, to stimulate the branches of the phrenic nerve. Results: Of the five patients, three could breathe using DPS alone for more than 24 h, one could do so for more than 6 h, and one could not do so at all. Conclusions: Although a longer follow-up period is needed in order to reach definitive conclusions, the initial results have been promising. At this writing, most of our patients have been able to remain ventilator-free for long periods of time.
Resumo:
PURPOSE. To examine the effects of transcorneal electrical stimulation (TES) on retinal degeneration of light-exposed rats. METHODS. Thirty-three Sprague Dawley albino rats were divided into three groups: STIM (n = 15) received 60 minutes of TES, whereas SHAM (n = 15) received identical sham stimulation 2 hours before exposure to bright light with 16,000 lux; healthy animals (n = 3) served as controls for histology. At baseline and weekly for 3 consecutive weeks, dark-and light-adapted electroretinography was used to assess retinal function. Analysis of the response versus luminance function retrieved the parameters Vmax (saturation amplitude) and k (luminance to reach 1/2Vmax). Retinal morphology was assessed by histology (hematoxylin-eosin [HE] staining; TUNEL assay) and immunohistochemistry (rhodopsin staining). RESULTS. Vmax was higher in the STIM group compared with SHAM 1 week after light damage (mean intra-individual difference between groups 116.06 mu V; P = 0.046). The b-wave implicit time for the rod response (0.01 cd.s/m(2)) was lower in the STIM group compared with the SHAM group 2 weeks after light damage (mean intra-individual difference between groups 5.78 ms; P = 0.023); no other significant differences were found. Histological analyses showed photoreceptor cell death (TUNEL and HE) in SHAM, most pronounced in the superior hemiretina. STIM showed complete outer nuclear layer thickness preservation, reduced photoreceptor cell death, and preserved outer segment length compared with SHAM (HE and rhodopsin). CONCLUSIONS. This sham-controlled study shows that TES can protect retinal cells against mild light-induced degeneration in Sprague Dawley rats. These findings could help to establish TES as a treatment in human forms of retinal degenerative disease. (Invest Ophthalmol Vis Sci. 2012;53:5552-5561) DOI: 10.1167/iovs.12-10037
Resumo:
We described recently that systemic hypoxia provokes vasoconstriction in heart failure (HF) patients. We hypothesized that either the exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction mediate the blunted vasodilatation during hypoxia in HF patients. Twenty-seven HF patients and 23 age-matched controls were studied. Muscle sympathetic nerve activity was assessed by microneurography and forearm blood flow (FBF) by venous occlusion plethysmography. Peripheral chemoreflex control was evaluated through the inhaling of a hypoxic gas mixture (10% O-2 and 90% N-2). Basal muscle sympathetic nerve activity was greater and basal FBF was lower in HF patients versus controls. During hypoxia, muscle sympathetic nerve activity responses were greater in HF patients, and forearm vasodilatation in HF was blunted versus controls. Phentolamine increased FBF responses in both groups, but the increase was lower in HF patients. Phentolamine and N-G-monomethyl-L-arginine infusion did not change FBF responses in HF but markedly blunted the vasodilatation in controls. FBF responses to hypoxia in the presence of vitamin C were unchanged and remained lower in HF patients versus controls. In conclusion, muscle vasoconstriction in response to hypoxia in HF patients is attributed to exaggerated reflex sympathetic nerve activation and blunted endothelial function (NO activity). We were unable to identify a role for oxidative stress in these studies. (Hypertension. 2012; 60: 669-676.) . Online Data Supplement
Resumo:
The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P = .019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. (C) 2012 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Salivary gland function is regulated by both the sympathetic and parasympathetic nervous systems. Previously we showed that the basal sympathetic outflow to the salivary glands (SNA(SG)) was higher in hypertensive compared to normotensive rats and that diabetes reduced SNA(SG) discharge at both strains. In the present study we sought to investigate how SNA(SG) might be modulated by acute changes in the arterial pressure and whether baroreceptors play a functional role upon this modulation. To this end, we measured blood pressure and SNA(SG) discharge in Wistar-Kyoto rats (WRY-intact) and in WRY submitted to sinoaortic denervation (WRY-SAD). We made the following three major observations: (i) in WRY-intact rats, baroreceptor loading in response to intravenous infusion of the phenylephrine evoked an increase in SNA(SG) spike frequency (81%, p<0.01) accompanying the increase mean arterial pressure ((sic)MAP: +77 +/- 14 mmHg); (ii) baroreceptor unloading with sodium nitroprusside infusion elicited a decrease in SNA(SG) spike frequency (17%, p<0.01) in parallel with the fall in arterial blood pressure ((sic)MAP: 30 3 mmHg) in WRY-intact rats; iii) in the WRY-SAD rats, phenylephrine-evoked rises in the arterial pressure ((sic)MAP: +56 +/- 6 mmHg) failed to produce significant changes in the SNA(SG) spike frequency. Taken together, these data show that SNA(SG) increases in parallel with pharmacological-induced pressor response in a baroreceptor dependent way in anaesthetised rats. Considering the key role of SNA(SG) in salivary secretion, this mechanism, which differs from the classic cardiac baroreflex feedback loop, strongly suggests that baroreceptor signalling plays a decisive role in the regulation of salivary gland function. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.
Resumo:
Amazonian gold mining activity results in human exposure to mercury vapor. We evaluated the visual system of two Amazonian gold miners (29 and 37 years old) by recording the transient pattern electroretinogram (tPERG) and transient pattern visual evoked potential (tPVEP). We compared these results with those obtained from a regional group of control subjects. For both tPERG and tPVEP, checkerboards with 0.5 or 2 cycles per degree (cpd) of spatial frequency were presented in a 16 degrees squared area, 100% Michelson contrast, 50cd/m(2) mean luminance, and 1 Hz square-wave pattern-reversal presentation. Two averaged waveforms (n = 240 sweeps, Is each) were monocularly obtained for each subject in each condition. Both eyes were monocularly tested only in gold miners. Normative data were calculated using a final pooled waveforin with 480 sweeps. The first gold miner, LCS, had normal tPERG responses. The second one, RNP, showed low tPERG (P50 component) amplitudes at 0.5cpd for both eyes, outside the normative data, and absence of response at 2 cpd for his right eye. Delayed tPVEP responses (P 100 component) were found at 2 cpd for LCS but the implicit times were inside the normative data. Subject RNP also showed delayed tPVEP responses (all components), but only the implicit time obtained with his right eye was outside the normative data at 2cpd. We conclude that mercury exposure levels found in the Amazon gold miners is high enough to damage the visual system and can be assessed by non-invasive electrophysiological techniques. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Noninvasive brain stimulation (NIBS) techniques are being increasingly investigated as a therapeutic approach for neuropsychiatric disorders. One method is to combine NIBS with pharmacotherapy to enhance the clinical effects or avoid an increase in drug dosages to decrease the incidence of side effects. However, few studies to date have investigated the relative and combined efficacy of NIBS with pharmacotherapy. Based on a literature review of previous studies and meta-analyses for major depression, we identified four randomized, controlled trials that tested the combination of NIBS with a new drug and two trials that directly compared NIBS versus pharmacotherapy. There was no study designed to address the relative efficacy of each intervention against placebo and against combined therapy. We discuss the methods and rationale of NIBS-pharmacotherapy trials, addressing some methodological aspects, including factorial design, recruitment, blinding, blinding assessment, placebo effect and quantitative aspects, such as power analysis, statistics and interaction effects. Our review of the methodology underlying NIBS-drug trials provides insights for the further clinical research development of NIBS in major depression.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) has been widely tested and shown to be effective for unipolar depression. Although it has also been investigated for bipolar depression (BD), there are only few rTMS studies with BD. Here, we investigated 56 patients with BD who received rTMS treatment until remission (defined as Hamilton Depression Rating Scores <= 7). We used simple and multiple logistic regressions to identify clinical and demographic predictors associated with duration of treatment (defined as <15 vs. >15 rTMS sessions). Age, refractoriness, number of prior depressive episodes, and severe depression at baseline were associated with a longer rTMS treatment. In the multivariate analysis, refractoriness (likelihood ratio (LR) = 4.33; p < 0.01) and baseline severity (LR = 0.18, p < 0.01) remained significant predictors. Our preliminary study showed that, in remitted patients, refractoriness and severity of index episode are associated with the need of a longer rTMS treatment; providing preliminary evidence of important factors associated with rTMS parameters adjustment.
Resumo:
Smoking cue-provoked craving is an intricate behavior associated with strong changes in neural networks. Craving is one of the main reasons subjects continue to smoke; therefore interventions that can modify activity in neural networks associated with craving can be useful tools in future research investigating novel treatments for smoking cessation. The goal of this study was to use a neuromodulatory technique associated with a powerful effect on spontaneous neuronal firing - transcranial direct current stimulation (tDCS) - to modify cue-provoked smoking craving. Based on preliminary data showing that craving can be modified after a single tDCS session, here we investigated the effects of repeated tDCS sessions on craving behavior. Twenty-seven subjects were randomized to receive sham or active tDCS (anodal tDCS of the left DLPFC). Our results show a significant cumulative effect of tDCS on modifying smoking cue-provoked craving. In fact, in the group of active stimulation, smoking cues had an opposite effect on craving after stimulation - it decreased craving - as compared to sham stimulation in which there was a small decrease or increase on craving. In addition, during these 5 days of stimulation there was a small but significant decrease in the number of cigarettes smoked in the active as compared to sham tDCS group. Our findings extend the results of our previous study as they confirm the notion that tDCS has a specific effect on craving behavior and that the effects of several sessions can increase the magnitude of its effect. These results open avenues for the exploration of this method as a therapeutic alternative for smoking cessation and also as a mean to change stimulus-induced behavior. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The neural control of the cardiovascular system is a complex process that involves many structures at different levels of nervous system. Several cortical areas are involved in the control of systemic blood pressure, such as the sensorimotor cortex, the medial prefrontal cortex and the insular cortex. Non-invasive brain stimulation techniques - repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) - induce sustained and prolonged functional changes of the human cerebral cortex. rTMS and tDCS has led to positive results in the treatment of some neurological and psychiatric disorders. Because experiments in animals show that cortical modulation can be an effective method to regulate the cardiovascular system, non-invasive brain stimulation might be a novel tool in the therapeutics of human arterial hypertension. We here review the experimental evidence that non-invasive brain stimulation can influence the autonomic nervous system and discuss the hypothesis that focal modulation of cortical excitability by rTMS or tDCS can influence sympathetic outflow and, eventually, blood pressure, thus providing a novel therapeutic tool for human arterial hypertension. (C) 2009 Published by Elsevier Ltd.
Resumo:
Background: Functional neuroimaging studies have shown that specific brain areas are associated with alcohol craving including the dorsolateral prefrontal cortex (DLPFC). We tested whether modulation of DLPFC using transcranial direct current stimulation (tDCS) could alter alcohol craving in patients with alcohol dependence while being exposed to alcohol cues. Methods: We performed a randomized sham-controlled study in which 13 subjects received sham and active bilateral tDCS delivered to DLPFC (anodal left/cathodal right and anodal right/cathodal left). For sham stimulation, the electrodes were placed at the same positions as in active stimulation; however, the stimulator was turned off after 30 s of stimulation. Subjects were presented videos depicting alcohol consumption to increase alcohol craving. Results: Our results showed that both anodal left/cathodal right and anodal right/cathodal left significantly decreased alcohol craving compared to sham stimulation (p < 0.0001). In addition, we found that following treatment, craving could not be further increased by alcohol cues. Conclusions: Our findings showed that tDCS treatment to DLPFC can reduce alcohol craving. These findings extend the results of previous studies using noninvasive brain stimulation to reduce craving in humans. Given the relatively rapid suppressive effect of tDCS and the highly fluctuating nature of alcohol craving, this technique may prove to be a valuable treatment strategy within the clinical setting. (C) 2007 Elsevier Ireland Ltd. All rights reserved.