29 resultados para two-temperature model
Resumo:
A non-Markovian one-dimensional random walk model is studied with emphasis on the phase-diagram, showing all the diffusion regimes, along with the exactly determined critical lines. The model, known as the Alzheimer walk, is endowed with memory-controlled diffusion, responsible for the model's long-range correlations, and is characterized by a rich variety of diffusive regimes. The importance of this model is that superdiffusion arises due not to memory per se, but rather also due to loss of memory. The recently reported numerically and analytically estimated values for the Hurst exponent are hereby reviewed. We report the finding of two, previously overlooked, phases, namely, evanescent log-periodic diffusion and log-periodic diffusion with escape, both with Hurst exponent H = 1/2. In the former, the log-periodicity gets damped, whereas in the latter the first moment diverges. These phases further enrich the already intricate phase diagram. The results are discussed in the context of phase transitions, aging phenomena, and symmetry breaking.
Resumo:
We have performed multicanonical simulations to study the critical behavior of the two-dimensional Ising model with dipole interactions. This study concerns the thermodynamic phase transitions in the range of the interaction delta where the phase characterized by striped configurations of width h = 1 is observed. Controversial results obtained from local update algorithms have been reported for this region, including the claimed existence of a second-order phase transition line that becomes first order above a tricritical point located somewhere between delta = 0.85 and 1. Our analysis relies on the complex partition function zeros obtained with high statistics from multicanonical simulations. Finite size scaling relations for the leading partition function zeros yield critical exponents. that are clearly consistent with a single second-order phase transition line, thus excluding such a tricritical point in that region of the phase diagram. This conclusion is further supported by analysis of the specific heat and susceptibility of the orientational order parameter.
Resumo:
The ATLAS and CMS collaborations have recently shown data suggesting the presence of a Higgs boson in the vicinity of 125 GeV. We show that a two-Higgs-doublet model spectrum, with the pseudoscalar state being the lightest, could be responsible for the diphoton signal events. In this model, the other scalars are considerably heavier and are not excluded by the current LHC data. If this assumption is correct, future LHC data should show a strengthening of the gamma gamma signal, while the signals in the ZZ(()*()) -> 4l and WW(*()) -> 2l2 nu channels should diminish and eventually disappear, due to the absence of diboson tree-level couplings of the CP-odd state. The heavier CP-even neutral scalars can now decay into channels involving the CP-odd light scalar which, together with their larger masses, allow them to avoid the existing bounds on Higgs searches. We suggest additional signals to confirm this scenario at the LHC, in the decay channels of the heavier scalars into AA and AZ. Finally, this inverted two-Higgs-doublet spectrum is characteristic in models where fermion condensation leads to electroweak symmetry breaking. We show that in these theories it is possible to obtain the observed diphoton signal at or somewhat above the prediction for the standard model Higgs for the typical values of the parameters predicted.
Resumo:
Molecular dynamics simulations of the model protein chignolin with explicit solvent were carried out, in order to analyze the influence of the Berendsen thermostat on the evolution and folding of the peptide. The dependence of the peptide behavior on temperature was tested with the commonly employed thermostat scheme consisting of one thermostat for the protein and another for the solvent. The thermostat coupling time of the protein was increased to infinity, when the protein is not in direct contact with the thermal bath, a situation known as minimally invasive thermostat. In agreement with other works, it was observed that only in the last situation the instantaneous temperature of the model protein obeys a canonical distribution. As for the folding studies, it was shown that, in the applications of the commonly utilized thermostat schemes, the systems are trapped in local minima regions from which it has difficulty escaping. With the minimally invasive thermostat the time that the protein needs to fold was reduced by two to three times. These results show that the obstacles to the evolution of the extended peptide to the folded structure can be overcome when the temperature of the peptide is not directly controlled.
Resumo:
In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The assessment of the thermal process impact in terms of food safety and quality is of great importance for process evaluation and design. This can be accomplished from the analysis of the residence time and temperature distributions coupled with the kinetics of thermal change, or from the use of a proper time-temperature integrator (TTI) as indicator of safety and quality. The objective of this work was to develop and test enzymic TTIs with rapid detection for the evaluation of continuous HTST pasteurization processes (70-85 degrees C, 10-60 s) of low-viscosity liquid foods, such as milk and juices. Enzymes peroxidase, lactoperoxidase and alkaline phosphatase in phosphate buffer were tested and activity was determined with commercial reflectometric strips. Discontinuous thermal treatments at various time-temperature combinations were performed in order to adjust a first order kinetic model of a two-component system. The measured time-temperature history was considered instead of assuming isothermal conditions. Experiments with slow heating and cooling were used to validate the adjusted model. Only the alkaline phosphatase TTI showed potential to be used for the evaluation of pasteurization processes. The choice was based on the obtained z-values of the thermostable and thermolabile fractions, on the cost and on the validation tests. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The ferromagnetic Ising model without external field on an infinite Lorentzian triangulation sampled from the uniform distribution is considered. We prove uniqueness of the Gibbs measure in the high temperature region and coexistence of at least two Gibbs measures at low temperature. The proofs are based on the disagreement percolation method and on a variant of the Peierls contour method. The critical temperature is shown to be constant a.s.
Resumo:
We show, in the imaginary time formalism, that the temperature dependent parts of all the retarded (advanced) amplitudes vanish in the Schwinger model. We trace this behavior to the CPT invariance of the theory and give a physical interpretation of this result in terms of forward scattering amplitudes of on-shell thermal particles.
Resumo:
We use the star count model of Ortiz & Lépine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and KS bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070$_{-800}^{+2000}$ pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.
Resumo:
An out of equilibrium Ising model subjected to an irreversible dynamics is analyzed by means of a stochastic dynamics, on a effort that aims to understand the observed critical behavior as consequence of the intrinsic microscopic characteristics. The study focus on the kinetic phase transitions that take place by assuming a lattice model with inversion symmetry and under the influence of two competing Glauber dynamics, intended to describe the stationary states using the entropy production, which characterize the system behavior and clarifies its reversibility conditions. Thus, it is considered a square lattice formed by two sublattices interconnected, each one of which is in contact with a heat bath at different temperature from the other. Analytical and numerical treatments are faced, using mean-field approximations and Monte Carlo simulations. For the one dimensional model exact results for the entropy production were obtained, though in this case the phase transition that takes place in the two dimensional counterpart is not observed, fact which is in accordance with the behavior shared by lattice models presenting inversion symmetry. Results found for the stationary state show a critical behavior of the same class as the equilibrium Ising model with a phase transition of the second order, which is evidenced by a divergence with an exponent µ ¼ 0:003 of the entropy production derivative.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.
Resumo:
A detailed numerical simulation of ethanol turbulent spray combustion on a rounded jet flame is pre- sented in this article. The focus is to propose a robust mathematical model with relatively low complexity sub- models to reproduce the main characteristics of the cou- pling between both phases, such as the turbulence modulation, turbulent droplets dissipation, and evaporative cooling effect. A RANS turbulent model is implemented. Special features of the model include an Eulerian– Lagrangian procedure under a fully two-way coupling and a modified flame sheet model with a joint mixture fraction– enthalpy b -PDF. Reasonable agreement between measured and computed mean profiles of temperature of the gas phase and droplet size distributions is achieved. Deviations found between measured and predicted mean velocity profiles are attributed to the turbulent combustion modeling adopted
Resumo:
We use the star count model of Ortiz & L´epine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and KS bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070+2000 −800 pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.
Resumo:
Temperature dependent transient curves of excited levels of a model Eu3+ complex have been measured for the first time. A coincidence between the temperature dependent rise time of the 5D0 emitting level and decay time of the 5D1 excited level in the [Eu(tta)3(H2O)2] complex has been found, which unambiguously proves the T1→5D1→5D0 sensitization pathway. A theoretical approach for the temperature dependent energy transfer rates has been successfully applied to the rationalization of the experimental data.