20 resultados para transfection
Resumo:
BACKGROUND CD90+ prostate cancer-associated (CP) stromal cells represent a diseased cell type found only in tumor tissue. They differ from their normal counterpart in gene expression and inductive signaling. Genetic reprogramming by induced pluripotent stem (iPS) cell technology can effectively change adult cells into stem-like cells through wholesale alteration of the gene expression program. This technology might be used to erase the abnormal gene expression of diseased cells. The resultant iPS cells would no longer express the disease phenotype, and behave like stem cells. METHODS CP stromal cells, isolated from tumor tissue of a surgically resected prostate by anti-CD90-mediated sorting and cultured in vitro, were transfected with in vitro packaged lentiviral expression vectors containing stem cell transcription factor genes POU5F1, LIN28, NANOG, and SOX2. RESULTS Alkaline phosphatase-positive iPS cells were obtained in about 3 weeks post-transfection at a frequency of 10-4. Their colony morphology was indistinguishable from that of human embryonic stem (ES) cells. Transcriptome analysis showed a virtually complete match in gene expression between the iPS and ES cells. CONCLUSIONS Genes of CP stromal cells could be fully inactivated by genetic reprogramming. As a consequence, the disease phenotype was cured. Prostate 72:14531463, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
Resumo:
Abstract Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements.
Resumo:
Hirschsprung disease is a congenital form of aganglionic megacolon that results from cristopathy. Hirschsprung disease usually occurs as a sporadic disease, although it may be associated with several inherited conditions, such as multiple endocrine neoplasia type 2. The rearranged during transfection (RET) proto-oncogene is the major susceptibility gene for Hirschsprung disease, and germline mutations in RET have been reported in up to 50% of the inherited forms of Hirschsprung disease and in 15-20% of sporadic cases of Hirschsprung disease. The prevalence of Hirschsprung disease in multiple endocrine neoplasia type 2 cases was recently determined to be 7.5% and the cooccurrence of Hirschsprung disease and multiple endocrine neoplasia type 2 has been reported in at least 22 families so far. It was initially thought that Hirschsprung disease could be due to disturbances in apoptosis or due to a tendency of the mutated RET receptor to be retained in the Golgi apparatus. Presently, there is strong evidence favoring the hypothesis that specific inactivating haplotypes play a key role in the fetal development of congenital megacolon/Hirschsprung disease. In the present study, we report the genetic findings in a novel family with multiple endocrine neoplasia type 2: a specific RET haplotype was documented in patients with Hirschsprung disease associated with medullary thyroid carcinoma, but it was absent in patients with only medullary thyroid carcinoma. Despite the limited number of cases, the present data favor the hypothesis that specific haplotypes not linked to RET germline mutations are the genetic causes of Hirschsprung disease.
Surgical approach to medullary thyroid carcinoma associated with multiple endocrine neoplasia type 2
Resumo:
We briefly review the surgical approaches to medullary thyroid carcinoma associated with multiple endocrine neoplasia type 2 (medullary thyroid carcinoma/multiple endocrine neoplasia type 2). The recommended surgical approaches are usually based on the age of the affected carrier/patient, tumor staging and the specific rearranged during transfection codon mutation. We have focused mainly on young children with no apparent disease who are carrying a germline rearranged during transfection mutation. Successful management of medullary thyroid carcinoma in these cases depends on early diagnosis and treatment. Total thyroidectomy should be performed before 6 months of age in infants carrying the rearranged during transfection 918 codon mutation, by the age of 3 years in rearranged during transfection 634 mutation carriers, at 5 years of age in carriers with level 3 risk rearranged during transfection mutations, and by the age of 10 years in level 4 risk rearranged during transfection mutations. Patients with thyroid tumor >5 mm detected by ultrasound, and basal calcitonin levels >40 pg/ml, frequently have cervical and upper mediastinal lymph node metastasis. In the latter patients, total thyroidectomy should be complemented by extensive lymph node dissection. Also, we briefly review our data from a large familial medullary thyroid carcinoma genealogy harboring a germline rearranged during transfection Cys620Arg mutation. All 14 screened carriers of the rearranged during transfection Cys620Arg mutation who underwent total thyroidectomy before the age of 12 years presented persistently undetectable serum levels of calcitonin (<2 pg/ml) during the follow-up period of 2-6 years. Although it is recommended that preventive total thyroidectomy in rearranged during transfection codon 620 mutation carriers is performed before the age of 5 years, in this particular family the surgical intervention performed before the age of 12 years led to an apparent biochemical cure.