28 resultados para toll-tike receptor
Resumo:
This study evaluated the expression of pattern recognition receptors (PRRs) and activation factors associated with salivary and blood neutrophils from different aged patients diagnosed with Candida-related denture stomatitis (DS). Expression of neutrophil PRRs was determined by flow cytometry and immunofluorescence, and the levels of selected cytokines that influence immune activation were determined by ELISA. The salivary (but not the serum derived) neutrophils of individuals with DS were found to have an increased expression of CD69 regardless of the age of the patient compared to patients without DS. However, these salivary neutrophils had a lower expression of CD66b and CD64. Expression of TLR2 was lower on the salivary-and serum-derived neutrophils from elderly individuals compared to the neutrophils of younger subjects, regardless of whether the individual had DS. Salivary interleukin (IL)-4 was elevated in both of the elderly subject groups (with or without DS). Only elderly DS patients were observed to have increased serum IL-4 levels and reduced salivary IL-12 levels. Younger DS patients showed an increase in salivary IL-10 levels, and both the saliva and the serum levels of IFN-gamma were increased in all of the younger subjects. Our data demonstrated that changes in both the oral immune cells and the protein components could be associated with DS. Furthermore, changes in the blood-derived factors were more associated with age than DS status. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
American tegumentary leishmaniasis (ATL) is a disease whose clinical features are strongly related to the type of immune response it induces. Herein we report an atypical presentation of cutaneous leishmaniasis in a woman with a severe and extensive sore located in her leg, and we describe the differences between the usual local immune response in ATL and the local immune response in this patient. We observed an intense inflammatory response characterized by Th1 cells and cytokines with conspicuous expression of Toll-like receptor 3 (TLR-3). Few parasites were present, but there was an extensive tissue damage. We also discuss the immunological factors that could be related to the atypical presentation.
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-alpha, whereas S. flexneri induced only the production of TNF-alpha. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4(+) T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL) 20 and TNF-alpha. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR) 4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-gamma) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-gamma response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant.
Resumo:
The expression of tlr4, md2 and cd14 was studied in equine blood leukocytes and in intestinal samples using real time PCR. The stability of three commonly used reference genes, glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxantine ribosyltransferase (HPRT) and succinate dehydrogenase complex subunit A (SDHA), was evaluated using qbase(PLUS). The equine peripheral blood mononuclear cells (eqPBMC) examined were either stimulated in vitro with Phorbol 12-myristate 13-acetate (PMA) and ionomycin or with the CpG oligodeoxynuclotide 2216 (CpG-ODN 2216) or obtained from horses before, during and after infusion of endotoxin. Intestinal tissue from healthy horses was sampled at ileum, right dorsal colon and rectum. Ranking of the three reference genes used for normalisation identified the combination HPRT/SDHA as most suitable both when determined ex vivo in leukocytes obtained from experimentally induced endotoxaemia and in eqPBMC activated in vitro while HPRT/GAPDH were most appropriate for the intestinal samples. The relative amounts of mRNA for TLR4 and MD-2 increased threefold during in vitro activation of the cells with CpG-ODN 2216 but was decreased in cultures stimulated with PMA/ionomycin. A transient elevation in the transcription of tlr4 and md2 was also evident for equine blood leukocytes following endotoxaemia. The levels of mRNA for CD14 on the other hard remained unaffected both during the induction of endotoxaemia and in the in vitro stimulated PBMCs. A low steady expression of TLR4, MD-2 and CD14 mRNA was demonstrated for the intestinal samples with no variation between the intestinal segments analysed. Thus, the foundation for real time PCR based levels of analysis of mRNA for all three components in the equine LPS receptor complex in different intestinal segments was set, making it possible to carry out future expression studies on clinical material. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods: Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30-45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings: Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion: Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.
Resumo:
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.
Resumo:
The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2(-/-), TLR4(-/-) and MyD88(-/-) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2(-/-), TLR4(-/-) and MyD88(-/-) mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88(-/-) mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1(+low) cells migration compared with the knockout mice and decreased in GR1(+high) cells migration into the peritoneal cavity. The TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.
Resumo:
Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-kappa B) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-kappa B DNA binding activity (NF-kappa Bp50 and NF-kappa Bp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-kappa B pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-kappa B (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-kappa B (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-kappa B signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Circulating neutrophils promptly react to different substances in the blood and orchestrate the beginning of the innate inflammatory response. We have shown that in vivo exposure to hydroquinone (HQ), the most oxidative compound of cigarette smoke and a toxic benzene metabolite, affects circulating neutrophils, making them unresponsive to a subsequent bacterial infection. In order to understand the action of toxic molecular mechanisms on neutrophil functions, in vitro HQ actions on pro-inflammatory mediator secretions evoked by Escherichia coli lipopolysaccharide (LPS) were investigated. Neutrophils from male Wistar rats were cultured with vehicle or HQ (5 or 10 mu M; 2 h) and subsequently incubated with LPS (5 mu g/ml; 18 h). Hydroquinone treatment impaired LPS-induced nitric oxide (NO), tumour necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta and IL-6 secretions by neutrophils. The toxic effect was not dependent on cell death, reduced expression of the LPS receptor or toll-like receptor-4 (TLR-4) or cell priming, as HQ did not induce reactive oxygen species generation or beta(2)integrin membrane expression. The action of toxic mechanisms on cytokine secretion was dependent on reduced gene synthesis, which may be due to decreased nuclear factor kappa B (NF-kappa B) nuclear translocation. Conversely, this intracellular pathway was not involved in impaired NO production because HQ treatments only affected inducible nitric oxide synthase protein expression and activity, suggesting posttranscriptional and/or posttranslational mechanisms of action. Altogether, our data show that HQ alters the action of different LPS-activated pathways on neutrophils, which may contribute to the impaired triggering of the host innate immune reaction detected during in vivo HQ exposure.
Resumo:
OBJECTIVES: The aim of this study was to describe the pattern of expression of Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) in skin biopsies of patients with American tegumentary leishmaniasis (ATL) caused by Leishmania braziliensis. METHODS: This prospective study evaluated 12 patients with ATL caused by Leishmania braziliensis confirmed by polymerase chain reaction. Immunohistochemistry was performed to determine the expression of TLR2 and TLR4. The number of NK cells, dendritic cells and macrophages in the tissue were calculated. The cytokine expression was determined using the anti-TNF-α, anti-IFN-Γ, anti-IL-1 and anti-IL-6. Double immunostaining reactions were used to determine the cell expressing TLR2 and TLR4. RESULTS: The numbers of cells expressing TLR2 and TLR4 were 145.48 ± 82.46 cell/mm² and 3.26 ± 4.11 cell/mm² respectively (p < 0.05). There was no correlation of TLR2 and TLR4 with the amount of cytokines and the number of NK cells, dendritic cells or macrophages. The double immunostaining revealed that TLR2 was expressed by macrophages. CONCLUSION: In human cutaneous leishmaniasis caused by Leishmania braziliensis, TLR2 is the most common TLR expressed during active disease, mainly by macrophages although without correlation with the amount of cytokines and number of cells.
Resumo:
Components of high molecular-weight (PI) obtained from Ascaris suum extract down-regulate the Th1/Th2-related immune responses induced by ovalbumin (OVA)-immunization in mice. Furthermore, the PI down-modulates the ability of dendritic cells (DCs) to activate T lymphocytes by an IL-10-mediated mechanism. Here, we evaluated the role of toll like receptors 2 and 4 (TLR2 and 4) in the modulatory effect of PI on OVA-specific immune response and the PI interference on DC full activation. An inhibition of OVA-specific cellular and humoral responses were observed in wild type (WT) or in deficient in TLR2 (TLR2(-/-)) or 4 (TLR4(-/-)) mice immunized with OVA plus PI when compared with OVA-immunized mice. Low expression of class II MHC, CD40, CD80 and CD86 molecules was observed in lymph node (LN) cells from WT, TLR2(-/-) or TLR4(-/-) mice immunized with OVA plus PI compared with OVA-primed cells. We also verified that PI was able to modulate the activation of DCs derived from bone marrow of WT, TLR2(-/-) or TLR4(-/-) mice induced in vitro by agonists of TLRs, as observed by a decreased expression of class II MHC and costimulatory molecules and by low secretion of pro-inflammatory cytokines. Its effect was accompanied by IL-10 synthesis. In this sense, the modulatory effect of PI on specific-immune response and DC activation is independent of TLR2 or TLR4.
Resumo:
The macrophages are the first host cells that interact with the fungus Paracoccidioides brasiliensis, but the main mechanisms that regulate this interaction are not well understood. Because the role played by P. brasiliensis lipids in macrophage activation was not previously investigated, we aimed to assess the influence of diverse lipid fractions from P. brasiliensis yeasts in this process. The possible participation of TLR2 and TLR4 signaling was also evaluated using TLR2- and TLR4-defective macrophages. Four lipid-rich fractions were studied as follows: F1, composed by membrane phospholipids and neutral lipids, F2 by glycolipids of short chain, F3a by membrane glycoproteins anchored by glycosylphosphatidylinositol (GPI) groups, and F3b by glycolipids of long chain. All assayed lipid fractions were able to activate peritoneal macrophages and induce nitric oxide (NO) production. Importantly, the F1 and F3a fractions exerted opposite effects in the control of P. brasiliensis uptake and killing, but both fractions inhibited cytokines production. Furthermore, the increased NO production and expression of costimulatory molecules induced by F3a was shown to be TLR2 dependent although F1 used Toll-independent mechanisms. In conclusion, our work suggests that lipid components may play a role in the innate immunity against P. brasiliensis infection using Toll-dependent and independent mechanisms to control macrophage activation.