21 resultados para thread rolling
Resumo:
de Lima-Pardini AC, Papegaaij S, Cohen RG, Teixeira LA, Smith BA, Horak FB. The interaction of postural and voluntary strategies for stability in Parkinson's disease. J Neurophysiol 108: 1244-1252, 2012. First published June 6, 2012; doi:10.1152/jn.00118.2012.-This study assessed the effects of stability constraints of a voluntary task on postural responses to an external perturbation in subjects with Parkinson's disease (PD) and healthy elderly participants. Eleven PD subjects and twelve control subjects were perturbed with backward surface translations while standing and performing two versions of a voluntary task: holding a tray with a cylinder placed with the flat side down [low constraint (LC)] or with the rolling, round side down [high constraint (HC)]. Participants performed alternating blocks of LC and HC trials. PD participants accomplished the voluntary task as well as control subjects, showing slower tray velocity in the HC condition compared with the LC condition. However, the latency of postural responses was longer in the HC condition only for control subjects. Control subjects presented different patterns of hip-shoulder coordination as a function of task constraint, whereas PD subjects had a relatively invariant pattern. Initiating the experiment with the HC task led to 1) decreased postural stability in PD subjects only and 2) reduced peak hip flexion in control subjects only. These results suggest that PD impairs the capacity to adapt postural responses to constraints imposed by a voluntary task.
Resumo:
The present study investigated whether postural responses are influenced by the stability constraint of a voluntary, manual task. We also examined how task constraint and first experience (the condition with which the participants started the experiment) influence the kinematic strategies used to simultaneously accomplish a postural response and a voluntary task. Twelve healthy, older adults were perturbed during standing, while holding a tray with a cylinder placed with the flat side down (low constraint, LC) or with the rolling, round side down (high constraint, HC). Central set changed according to the task constraint, as shown by a higher magnitude of both the gastrocnemius and tibialis anterior muscle activation bursts in the HC than in the LC condition. This increase in muscle activation was not reflected, however, in changes in the center of pressure or center of mass displacement. Task constraint influenced the peak shoulder flexion for the voluntary tray task but not the peak hip flexion for the postural task. In contrast, first experience influenced the peak hip flexion but not the peak shoulder flexion. These results suggest an interaction between two separate control mechanisms for automatic postural responses and voluntary stabilization tasks.
Resumo:
The mechanisms underlying immune deficiency in diabetes are largely unknown. In the present study, we demonstrate that diabetic mice are highly susceptible to polymicrobial sepsis due to reduction in rolling, adhesion, and migration of leukocytes to the focus of infection. In addition, after sepsis induction, CXCR2 was strongly downregulated in neutrophils from diabetic mice compared with nondiabetic mice. Furthermore, CXCR2 downregulation was associated with increased G-protein coupled receptor kinase 2 (GRK2) expression in these cells. Different from nondiabetic mice, diabetic animals submitted to mild sepsis displayed a significant augment in alpha 1-acid glycoprotein (AGP) hepatic mRNA expression and serum protein levels. Administration of AGP in nondiabetic mice subjected to mild sepsis inhibited the neutrophil migration to the focus of infection, as well as induced t-selectin shedding and rise in CD11b of blood neutrophils. Insulin treatment of diabetic mice reduced mortality rate, prevented the failure of neutrophil migration, impaired GRK2-mediated CXCR2 downregulation, and decreased the generation of AGP. Finally, administration of AGP abolished the effect of insulin treatment in diabetic mice. Together, these data suggest that AGP may be involved in reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. Diabetes 61:1584-1591, 2012
Resumo:
Purpose: Dyslipidemia is characterized by high lipid blood levels that are risk factors for cardiovascular diseases, which are leading causes of death. However, it is unclear whether dyslipidemia is a cause of the dry eye syndrome (DES). Therefore we determined in transgenic mice models of dyslipidemia, whether there is an association with DES development. Methods: Dyslipidemic models included male and female adult mice overexpressing apolipoprotein CIII (Apo CIII), LDL receptor knockout (LDLR-KO) and ApoE knockout (ApoE-KO). They were compared with age-and gender-matched C57BL/6 mice. Ocular health was evaluated based on corneal slit lamp assessment, phenol red thread test (PRT) and impression cytology. Blood lipid profiles and histology of meibomian and lacrimal glands were also evaluated. Effects of high-fat diet and aging were observed in LDLR-KO and ApoCIII strains, respectively. Results: Body weight and lacrimal gland weight were significantly higher in male mice compared to females of the same strain (P < 0.05). Body weight was significantly lower in LDLRKO mice receiving high lipid diet compared to their controls (P = 0.0043). ApoE-KO were hypercholesterolemic and ApoCIII hypertriglyceridemic while LDLR-KO showed increases in both parameters. The PRT test was lower in male LDLR-KO mice with high-fat diet than control mice with standard diet (P = 0.0273). Aging did not affect lacrimal structural or functional parameters of ApoCIII strain. Conclusions: DES development is not solely dependent on dyslipidemia in relevant mice models promoting this condition. On the other hand, lacrimal gland structure and function are differentially impacted by lipid profile changes in male and female mice. This dissociation suggests that other factors beside dyslipidemia impact on tear film dysfunction and DES development.
Resumo:
Abstract Background Leukotriene B4 (LTB4) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB4 released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB4-loaded MS. Results In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB4-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB4-loaded MS also increase peroxisome proliferator-activated receptor-α (PPARα) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-1 (MCP-1) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB4-loaded MS. Conclusion LTB4-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.
Resumo:
A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}<110> component, predominated in the as-cast condition and was transformed into brass, copper and S type textures during the cold rolling process. There was practically no difference between the deformation textures at the two thickness reductions.