24 resultados para suction of solid particles
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
Objective parameters that could provide a basis for food texture selection for elderly or dysphagic patients have not been established. We, therefore, aimed to develop a precise method of measuring large particles (>2 mm in diameter) in a bolus and an analytical method to provide a scientific rationale for food selection under masticatory dysfunction conditions. We developed a new illumination system to evaluate the ability of twenty female participants (mean age, 23.4 +/- 4.3 years) to masticate carrots, peanuts and beef with full, half and one quarter of the number of masticatory strokes. We also evaluated mastication under suppressed force, regulated by 20% electromyographic of the masseter muscle. The intercept and inclination of the regression line for the distribution of large particles were adopted as coefficients for the discrimination of masticatory efficiency. Single set of coefficient thresholds of 0.10 for the intercept and 1.62 for the inclination showed excellent discrimination of masticatory conditions for all three test foods with high specificity and sensitivity. These results suggested that our method of analysing the distribution of particles >2 mm in diameter might provide the basis for the appropriate selection of food texture for masticatory dysfunction patients from the standpoint of comminution.
Resumo:
A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 degrees to +15 degrees in declination using four different energy ranges above 1 EeV (10(18) eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.
Resumo:
Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory.
Resumo:
The synthesis of zirconia-based ordered mesoporous structures for catalytic applications is a research area under development. These systems are also potential candidates as anodes in intermediate temperature solid oxide fuel cells (it-SOFC) due to an enhancement on their surface area [1-4]. The structural features of mesoporous zirconia-ceria materials in combination with oxygen storage/release capacity (OSC) are crucial for various catalytic reactions. The direct use of hydrocarbons as fuel for the SOFC (instead of pure H2), without the necessity of reforming and purification reactors can improve global efficiency of these systems [4]. The X-ray diffraction data showed that ZrO2-x%CeO2 samples with x>50 are formed by a larger fraction of the cubic phase (spatial group Fm3m), while for x<50 the major crystalline structure is the tetragonal phase (spatial group P42/nmc). The crystallite size of the cubic phase increases with increase in ceria content. The tetragonal crystallite size decreases when ceria content increases. After impregnation, the Rietveld analysis showed a NiO content around 60wt.% for all samples. The lattice parameters for the ZrO2 tetragonal phase are lower for higher ZrO2 contents, while for all samples the cubic NiO and CeO2 parameters do not present changes. The calculated densities are higher for higher ceria content, as expected. The crystallite size of NiO are similar (~20nm) for all samples and 55nm for the NiO standard. Nitrogen adsorption experiments revealed a broader particle size distribution for higher CeO2 content. The superficial area values were around 35m2/g for all samples, the average pore diameter and pore volumes were higher when increasing ceria content. After NiO impregnation the particle size distribution was the same for all samples, with two pore sizes, the first around 3nm and a broader peak around 10nm. The superficial area increased to approximately 45m2/g for all samples, and the pore volume was also higher after impregnation and increased when ceria content increased. These results point up that the impregnation of NiO improves the textural characteristics of the pristine material. The complementary TEM/EDS images present a homogeneous coating of NiO particles over the ZrO2-x%CeO2 support, showing that these samples are excellent for catalysis applications. [1] D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279, 548-552 (1998). [2] C. Yu, Y. Yu, D. Zhao, Chem. Comm. 575-576 (2000). [3] A. Trovarelli, M. Boaro, E. Rocchini, C. de Leitenburg, G. Dolcetti, J. Alloys Compd. 323-324 (2001) 584-591. [4] S. Larrondo, M. A. Vidal, B. Irigoyen, A. F. Craievich, D. G. Lamas, I. O. Fábregas, et al. Catal. Today 107–108 (2005) 53-59.
Resumo:
One of contemporary environmental issues refers to progressive and diverse generation of solid waste in urban areas or specific, and requires solutions because the traditional methods of treatment and disposal are becoming unviable over the years and, consequently, a significant contingent of these wastes presents final destination inappropriate. The diversity of solid waste generated as a result of human activities must have the appropriate allocation to specific legislation in force, such as landfill, incineration, among other procedures established by the competent bodies. Thus, also the waste generated in port activities or proceeding vessels require classification and segregation for proper disposal later. This article aims at presenting a methodology for the collection, transportation, treatment and disposal of solid waste port and also application of automation technology that makes possible the implementation of the same.
Resumo:
The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.