27 resultados para speed of harvest


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statement of problem: Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. Purpose: The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Material and methods: Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dualpolymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (?=.05). Results: ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (P<.05). The highest push-out strength results with root location were obtained with Luting and Lining (S3) (19.5 ±4.9 MPa), Ketac Cem (S2) (18.6 ±5.5 MPa), and Luting and Lining (S1) (18.0 ±7.6 MPa). The lowest mean values were recorded with Variolink II (S1) (4.6 ±4.0 MPa), Variolink II (S2) (1.6 ±1.5 MPa), and Rely X ARC (S3) (0.9 ±1.1 MPa). Conclusions: Self-adhesive cements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statement of problem: Resin cements are widely used to cement intraradicular posts, but bond strength is significantly influenced by the technique and material used for cementation. Purpose: The purpose of this study was to evaluate the bond strength of 3 self-adhesive cements used to cement intraradicular glass fiber posts. The cements all required different application and handling techniques. Material and Methods: Forty-five human maxillary canines were selected and randomly divided into 3 groups n= 15 by drawing lots: Group BIS – Biscem, Group BRE – Breeze, and Group MAX – Maxcem. Each group was divided into 3 subgroups according to application and handling techniques: Sub-group A – Automix/Point tip applicator, Sub-group L – Handmix/Lentulo, and Sub-group C – Handmix/Centrix. Cementation of the posts was performed according to the manufacturers’ instructions. The push-out test was performed with a crosshead speed of 0.5 mm/min, and bond strength was expressed in megapascals. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (?=.05). Results: Breeze cement showed the highest average for the subgroups A, L, and C when compared to the Biscem cement and Maxcem Elite (P<.05). Statistically significant differences among the subgroups were only observed for Biscem. Conclusions: This study shows that application and handling techniques may influence the bond strength of different self-adhesive cements when used for intraradicular post cementation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background ArtinM is a D-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system. Results The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized D-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure. Conclusions Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This in vitro study compared different ultrasonic vibration modes for intraradicular cast post removal. The crowns of 24 maxillary canines were removed, the roots were embedded in acrylic resin blocks, and the canals were treated endodontically. The post holes were prepared and root canal impressions were taken with self-cured resin acrylic. After casting, the posts were cemented with zinc phosphate cement. The samples were randomly distributed into 3 groups (n=8): G1: no ultrasonic vibration (control); G2: tip of the ultrasonic device positioned perpendicularly to core surface and close to the incisal edge; and G3: tip of the ultrasonic device positioned perpendicularly to core surface at cervical region, close to the line of cementation. An Enac OE-5 ultrasound unit with an ST-09 tip was used. All samples were submitted to the tensile test using an universal testing machine at a crosshead speed of 1 mm/min. Data were subjected to one-way ANOVA and Tukey's post-hoc tests (α=0.05). Mean values of the load to dislodge the posts (MPa) were: G1 = 4.6 (± 1.4) A; G2 = 2.8 (± 0.9) B, and G3= 0.9 (± 0.3) C. Therefore, the ultrasonic vibration applied with the tip of device close to the core's cervical area showed higher ability to reduce the retention of cast post to root canal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To describe and compare three alternative methods for controlling classical friction: Self-ligating brackets (SLB), special brackets (SB) and special elastomeric ligatures (SEB). METHODS: The study compared Damon MX, Smart Clip, In-Ovation and Easy Clip self-ligating bracket systems, the special Synergy brackets and Morelli's twin bracket with special 8-shaped elastomeric ligatures. New and used Morelli brackets with new and used elastomeric ligatures were used as control. All brackets had 0.022 x 0.028-in slots. 0.014-in nickel-titanium and stainless steel 0.019 x 0.025-in wires were tied to first premolar steel brackets using each archwire ligation method and pulled by an Instron machine at a speed of 0.5 mm/minute. Prior to the mechanical tests the absence of binding in the device was ruled out. Statistical analysis consisted of the Kruskal-Wallis test and multiple non-parametric analyses at a 1% significance level. RESULTS: When a 0.014-in archwire was employed, all ligation methods exhibited classical friction forces close to zero, except Morelli brackets with new and old elastomeric ligatures, which displayed 64 and 44 centiNewtons, respectively. When a 0.019 x 0.025-in archwire was employed, all ligation methods exhibited values close to zero, except the In-Ovation brackets, which yielded 45 cN, and the Morelli brackets with new and old elastomeric ligatures, which displayed 82 and 49 centiNewtons, respectively. CONCLUSIONS: Damon MX, Easy Clip, Smart Clip, Synergy bracket systems and 8-shaped ligatures proved to be equally effective alternatives for controlling classical friction using 0.014-in nickel-titanium archwires and 0.019 x 0.025-in steel archwires, while the In-Ovation was efficient with 0.014-in archwires but with 0.019 x 0.025-in archwires it exhibited friction that was similar to conventional brackets with used elastomeric ligatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (O,SmL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomies with a metallic cannula (14 gauge).The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups:(i) closed chest,(ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mUs). lnsufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a,b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RATIONALE: The interaction between lungs and chest wall influences lung volume, that determines lung history during respiration cycle. In this study, the influence of chest wall mechanics on respiratory system is assessed by the evaluation of inspiration pressure-volume curve (PV curve) under three different situations: closed-chest, open-chest and isolated lung. The PV curve parameters in each situation allow us to further understand the role played by different chest wall elements in the respiratory function. Methods: Twenty-four male Wistar rats (236 ± 29 g) were used. The animals were weighted and then anesthetized with xylazine 2% (0,5mL/kg) and ketamine 10% (0,9mL/kg), exsanguinated and later tracheostomized with a metallic cannula (14 gauge). The cannula was connected to an automatic small animal insufflator. This setup was connected to a pressure transducer (32 samples/s). The 24 animals were randomly separated in three groups: (i) closed chest, (ii) open chest and (iii) isolated lung. The rats were insufflated with 20mL quasi-statically (constant speed of 0,1mL/s). Insufflated volume and measured pressure data were kept and PV curves were obtained for all animals. The PV curves were fitted (non-linear least squares) against the sigmoid equation (1) to obtain the sigmoid equation parameters (a,b,c,d). Elastance measurements were obtained from linear regression of pressure/volume measurements in a 0,8s interval before and after the calculated point. Results: The parameters a, b and c showed no significant change, but the parameter d showed a significant variation among the three groups. The initial elastance also varied between open and closed chest, indicating the need of a higher pressure for the lung expansion, as can be seen in Table 1. Table 1: Mean and Standard Deviation of parameters obtained for each protocol. Protocol: Closed Chest – a (mL) -0.35±0.33; b (mL) 13.93±0.89; c (cm H2O) 21.28±2.37; d (cm H2O) 6.17±0.84; r²** (%) 99.4±0.14; Initial Elastance* (cm H2)/mL) 12.72±6.66; Weight (g) 232.33±5.72. Open Chest - a (mL) 0.01±0.28; b (mL) 14.79±0.54; c (cm H2O) 19.47±1.41; d (cm H2O) 3.50±0.28; r²** (%) 98.8±0.34; Initial Elastance* (cm H2)/mL) 28.68±2.36; Weight (g) 217.33±7.97. Isolated Lung - a (mL) -0.09±0.46; b (mL) 14.22±0.75; c (cm H2O) 21.76±1.43; d (cm H2O) 4.24±0.50; r²** (%) 98.9±0.19; Initial Elastance* (cm H2)/mL) 7.13±8.85; Weight (g) 224.33±16.66. * Elastance measures in the 0-0,1 mL range. ** Goodness of sigmoid fit versus measured data Conclusion: A supporting effect of the chest wall was observed at the initial moments of inspiration, observed as a higher initial elastance in open chest situations than in closed chest situations (p=0,00001). The similar initial elastance for the isolated lung and closed chest may be explained by the specific method used for the isolated lung experiment. As the isolated lung is supported by the trachea vertically, the weight of the tissue may have a similar effect of the residual negative pressure in the thorax, responsible for maintaining the residual volume.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate the compressive strength of microhybrid (FiltekTM Z250) and nanofilled (FiltekTM Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.