17 resultados para sensor and actuators


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vanadium/titanium mixed oxide films were produced using the sol-gel route. The structural investigation revealed that increased TiO2 molar ratio in the mixed oxide disturbs the V2O5 crystalline structure and makes it amorphous. This blocks the TiO2 phase transformation, so TiO2 stabilizes in the anatase phase. In addition the surface of the sample always presents larger amounts of TiO2 than expected, revealing a concentration gradient along the growth direction. For increased TiO2 molar ratios the roughness of the surface is reduced. Ion sensors were fabricated using the extended gate field effect transistor configuration. The obtained sensitivities varied in the range of 58 mV/pH down to 15 mV/pH according to the composition and morphology of the surface of the samples. Low TiO2 amounts presented better sensing properties that might be related to the cracked and inhomogeneous surfaces. Rising the TiO2 quantity in the films produces homogeneous surfaces but diminishes their sensitivities. Thus, the present paper reveals that the compositional and structural aspects change the surface morphology and electrical properties accounting for the final ion sensing properties of the V2O5/TiO2 films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053206jes] All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of an electroanalytical method for simultaneous determination of copper and lead ions in sugar cane spirit (cachaça) using carbon paste electrode modified with ascorbic acid and carbon nanotubes (CPE-AaCNT) is described. Squarewave voltammetry (SWV) with anodic stripping was employed, and this technique was optimized with respect to the following parameters: frequency (50 Hz), amplitude (100 mV) and scan increment (9 mV). The analytical curves were linear in the range from 0.0900 to 7.00 mg L- 1 for lead and copper. The limits of detection were 48.5 and 23.9 µg L- 1 for lead and copper, respectively. The developed method was applied to the simultaneous determination of copper and lead in five commercial samples of sugar cane spirit. The results were in good agreement with those obtained by F AAS/GF AAS (flame atomic absorption spectrometry/graphite furnace atomic absorption spectrometry) and showed that CPE-AaCNT can be successfully employed in the simultaneous determination of these metals in real sugar cane spirit samples.