21 resultados para recombinant platelet derived growth factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and alpha,beta-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-. UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The alpha,beta-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives/Hypothesis. Hepatocyte growth factor (HGF) is a multifunctional polypeptide that plays various roles in embryogenesis and tissue regeneration and exhibits marked antifibrotic activity. The present study sought to assess the effects of HGF injection and reinjection coinciding with its peak of activity on collagen density, vessel density, inflammatory reaction in the lamina propria, and mean epithelial thickness in the injured rabbit vocal fold. Study Design. Prospective, controlled, experimental animal study. Methods. Fourteen rabbits were subdivided into two groups and underwent injury of the vocal folds. Immediately after injury, animals in group 1 received HGF injections into the right vocal fold (RVF), whereas those in group 2 received bilateral HGF injections and a single reinjection into the RVF 10 days after the first, to coincide with the peak of HGF activity. The left vocal folds (LVFs) served as controls in both groups. Histological assessment of laryngeal specimens was performed at 30 and 40 days, respectively. Results. In both groups, collagen density was lower in the right (treated) vocal folds than in the left (control) folds (P = 0.018). Vessel density was higher in the RVFs in group 2 (P = 0.018). Differences were found in mean epithelial thickness and inflammatory reaction in the lamina propria but did not reach statistical significance. Conclusions. In the scarred rabbit vocal fold, HGF injection is associated with decreased collagen density in the lamina propria, whereas reinjection after 10 days produces decreased collagen density and higher vessel density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with septic shock and 12 healthy volunteers for exosome separation. Exosomes from septic patients and healthy individuals were investigated concerning their myocardial depressant effect in isolated heart and papillary muscle preparations. Results Exosomes from the plasma of septic patients significantly decreased positive and negative derivatives of left ventricular pressure in isolated rabbit hearts or developed tension and its first positive derivative in papillary muscles. Exosomes from healthy individuals decreased these variables non-significantly. In hearts from rabbits previously exposed to endotoxin, septic exosomes decreased positive and negative derivatives of ventricular pressure. This negative inotropic effect was fully reversible upon withdrawal of exosomes. Nitric oxide (NO) production from exosomes derived from septic shock patients was demonstrated by fluorescence. Also, there was an increase in myocardial nitrate content after exposure to septic exosomes. Conclusion Circulating platelet-derived exosomes from septic patients induced myocardial dysfunction in isolated heart and papillary muscle preparations, a phenomenon enhanced by previous in vivo exposure to lipopolysaccharide. The generation of NO by septic exosomes and the increased myocardial nitrate content after incubation with exosomes from septic patients suggest an NO-dependent mechanism that may contribute to myocardial dysfunction of sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Background Pancreatic cancer is a rare tumor with an extremely low survival rate. Its known risk factors include the chronic use of tobacco and excessive alcohol consumption and the presence of chronic inflammatory diseases, such as pancreatitis and type 2 diabetes. Angiogenesis and lymphangiogenesis, which have been the focus of recent research, are considered prognostic factors for cancer development. Knowing the angiogenic and lymphangiogenic profiles of a tumor may provide new insights for designing treatments according to the different properties of the tumor. The aim of this study was to evaluate the density of blood and lymphatic vessels, and the expression of VEGF-A, in pancreatic adenocarcinomas, as well as the relationship between blood and lymphatic vascular density and the prognostically important clinical-pathological features of pancreatic tumors. Methods Paraffin blocks containing tumor samples from 100 patients who were diagnosed with pancreatic cancer between 1990 and 2010 were used to construct a tissue microarray. VEGF expression was assessed in these samples by immunohistochemistry. To assess the lymphatic and vascular properties of the tumors, 63 cases that contained sufficient material were sectioned routinely. The sections were then stained with the D2-40 antibody to identify the lymphatic vessels and with a CD34 antibody to identify the blood vessels. The vessels were counted individually with the Leica Application Suite v4 program. All statistical analyses were performed using SPSS 18.0 (Chicago, IL, USA) software, and p values ≤ 0.05 were considered significant. Results In the Cox regression analysis, advanced age (p=0.03) and a history of type 2 diabetes (p=0.014) or chronic pancreatitis (p=0.02) were shown to be prognostic factors for pancreatic cancer. Blood vessel density (BVD) had no relationship with clinical-pathological features or death. Lymphatic vessel density (LVD) was inversely correlated with death (p=0.002), and by Kaplan-Meyer survival analysis, we found a significant association between low LVD (p=0.021), VEGF expression (p=0.023) and low patient survival. Conclusions Pancreatic carcinogenesis is related to a history of chronic inflammatory processes, such as type 2 diabetes and chronic pancreatitis. In pancreatic cancer development, lymphangiogenesis can be considered an early event that enables the dissemination of metastases. VEGF expression and low LVD can be considered as poor prognostic factors as tumors with this profile are fast growing and highly aggressive. Virtual slides. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5113892881028514