17 resultados para probability models
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
We derive asymptotic expansions for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of dispersion models, under a sequence of Pitman alternatives. The asymptotic distributions of these statistics are obtained for testing a subset of regression parameters and for testing the precision parameter. Based on these nonnull asymptotic expansions, the power of all four tests, which are equivalent to first order, are compared. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2012 Elsevier B.V. All rights reserved.