24 resultados para pathogenicity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Primary HIV infection is usually caused by R5 viruses, and there is an association between the emergence of CCXR4-utilizing strains and faster disease progression. We characterized HIV-1 from a cohort of recently infected individuals in Brazil, predicted the virus's co-receptor use based on the env genotype and attempted to correlate virus profiles with disease progression. Methods: A total of 72 recently infected HIV patients were recruited based on the Serologic Testing Algorithm for Recent HIV Seroconversion and were followed every three to four months for up to 78 weeks. The HIV-1 V3 region was characterized by sequencing nine to twelve weeks after enrollment. Disease progression was characterized by CD4+ T-cell count decline to levels consistently below 350 cells/mu L. Results: Twelve out of 72 individuals (17%) were predicted to harbor CXCR4-utilizing strains; a baseline CD4,350 was more frequent among these individuals (p = 0.03). Fifty-seven individuals that were predicted to have CCR5-utilizing viruses and 10 individuals having CXCR4-utilizing strains presented with baseline CD4.350; after 78 weeks, 33 individuals with CCR5 strains and one individual with CXCR4 strains had CD4.350 (p = 0.001). There was no association between CD4 decline and demographic characteristics or HIV-1 subtype. Conclusions: Our findings confirm the presence of strains with higher in vitro pathogenicity during early HIV infection, suggesting that even among recently infected individuals, rapid progression may be a consequence of the early emergence of CXCR4-utilizing strains. Characterizing the HIV-1 V3 region by sequencing may be useful in predicting disease progression and guiding treatment initiation decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful international clones have recently emerged among Escherichia coli that produce CTX-M beta-lactamases as important causes of community-onset urinary tract and bloodstream infections. One hundred and seven isolates that belong to sequence types (STs) ST38, ST131, ST405, ST648, and 38 nonrelated CTX-M producing E. coli from Canada and the Netherlands were assigned to phylogenetic groups and tested for the presence of genes encoding for virulence factors (VFs) using established multiplex polymerase chain reaction. The STs E. coli were significantly more resistant to antibiotics-ST38, ST405, and ST648 belonged to phylogenetic group D while ST131 belonged to B2. Secreted autotransporter toxin (sat), aerobactin receptor, and pathogenicity island marker were significantly more common among the STs; the heat-resistant agglutinin (hra) was present in ST38, sat, and uropathogenic-specific protein, and putative adhesin-siderophore receptor was more common in ST131, while outer membrane protease T was present in ST648. ST131 had a significantly higher VF score. In conclusion, the precise role of these VFs remains to be elucidated; however, we have identified certain putative VFs that possibly contribute to the fitness and success of certain sequence types. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um questionamento muito frequente: qual o tempo que se deve esperar para movimentar um dente submetido a tratamento endodôntico, inclusive os de perfuração radicular? A extrapolação dos fenômenos observados em outras regiões da raiz e a fundamentação experimental com base em situações correlatas permitem afirmar que 30 dias correspondem a um período mais do que razoável para o reparo periapical estar em fase avançada de maturação e síntese. As forças ortodônticas são muito leves e dissipantes - muito mais do que o traumatismo dentário, o trauma oclusal e as forças mastigatórias normais -, e não devem interferir na patogenicidade e virulência das microbiotas envolvidas nas necroses e lesões periapicais crônicas, assim como não devem interferir nos fenômenos celulares e teciduais durante a reorganização dos tecidos apicais e periapicais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. Results We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. Conclusions We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is one of the world's largest countries with a rich diversity of wildlife, including resident and migratory wild birds, which may be natural reservoirs of the Newcastle disease virus (NDV). Because Brazil is a major global exporter of chicken meat, the emergence of such a disease may have a huge negative impact not only on the economy due to trade restrictions and embargoes, but also on the quality of life of the population. Samples were collected from 1,022 asymptomatic domestic and wild birds from the Brazilian coast and the Amazon region using tracheal/cloacal swabs and tested by RT-qPCR. The results showed 7 (0.7%) birds were positive for NDV. The positive samples were then isolated in embryonated chicken eggs and their matrix protein genes were partially sequenced, revealing a low-pathogenicity NDV. This study confirms the maintenance of the velogenic-NDV free status of Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey of Microsporum gypseum was conducted in soil samples in different geographical regions of Brazil. The isolation of dermatophyte from soil samples was performed by hair baiting technique and the species were identified by morphology studies. We analyzed 692 soil samples and the recuperating rate was 19.2%. The activities of keratinase and elastase were quantitatively performed in 138 samples. The sequencing of the ITS region of rDNA was performed in representatives samples. M. gypseum isolates showed significant quantitative differences in the expression of both keratinase and elastase, but no significant correlation was observed between these enzymes. The sequencing of the representative samples revealed the presence of two teleomorphic species of M. gypseum (Arthroderma gypseum and A. incurvatum). The enzymatic activities may play an important role in the pathogenicity and a probable adaptation of this fungus to the animal parasitism. Using the phenotypical and molecular analysis, the Microsporum identification and their teleomorphic states will provide a useful and reliable identification system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Enterococcus faecalis is a member of the mammalian gastrointestinal microbiota but has been considered a leading cause of hospital-acquired infections. In the oral cavity, it is commonly detected from root canals of teeth with failed endodontic treatment. However, little is known about the virulence and genetic relatedness among E. faecalis isolates from different clinical sources. This study compared the presence of enterococcal virulence factors among root canal strains and clinical isolates from hospitalized patients to identify virulent clusters of E. faecalis. Methods: Multilocus sequence typing analysis was used to determine genetic lineages of 40 E. faecalis clinical isolates from different sources. Virulence clusters were determined by evaluating capsule (cps) locus polymorphisms, pathogenicity island gene content, and antibiotic resistance genes by polymerase chain reaction. Results: The clinical isolates from hospitalized patients formed a phylogenetically separate group and were mostly grouped in the clonal complex 2, which is a known virulent cluster of E. faecalis that has caused infection outbreaks globally. The clonal complex 2 group comprised capsule-producing strains harboring multiple antibiotic resistance and pathogenicity island genes. On the other hand, the endodontic isolates were more diverse and harbored few virulence and antibiotic resistance genes. In particular, although more closely related to isolates from hospitalized patients, capsuleproducing E. faecalis strains from root canals did not carry more virulence/antibiotic genes than other endodontic isolates. Conclusions: E. faecalis isolates from endodontic infections have a genetic and virulence profile different from pathogenic clusters of hospitalized patients’ isolates, which is most likely due to niche specialization conferred mainly by variable regions in the genome.