30 resultados para parameter-dependent Lyapunov function
Resumo:
There is a high incidence of pituitary-dependent hyperadrenocorticism (PDH) in Poodle dogs, with family members being affected by the disease, suggesting a genetic involvement. Tpit is an obligate transcription factor for the expression of pro-opiomelanocortingene and for corticotroph terminal differentiation. The aim of the present study was to screen the Tpit gene for germline mutations in Poodles with PDH. Fifty Poodle dogs (33 female, 8.71 +/- 2.8 years) with PDH and 50 healthy Poodle dogs (32 females, 9.4241 2.8 years) were studied. Genomic DNA was isolated from peripheral blood, amplified by PCR and submitted to automatic sequence. No mutation in the coding region of Tpit was found, whereas the new single nucleotide polymorphism p.S343G, in heterozygous state, was found in the same frequency in both PDH and control groups. We concluded that Tpit gain-of-function mutations are not involved in the etiology of PDH in Poodle dogs.
Resumo:
Objectives: Aerobic exercise training has been established as an important nonpharmacological treatment for hypertension. We investigated whether the number and function of endothelial progenitor cells (EPCs) are restored after exercise training, potentially contributing to neovascularization in hypertension. Methods: Twelve-week-old male spontaneously hypertensive rats (SHRs, n = 14) and Wistar Kyoto (WKY, n = 14) rats were assigned to four groups: SHR; trained SHR (SHR-T); WKY; and trained WKY. Exercise training consisted of 10 weeks of swimming. EPC number and function, as well as the vascular endothelial growth factor (VEGF), nitrotyrosine and nitrite concentration in peripheral blood were quantified by fluorescence-activated cell sorter analysis (CD34+/Flk1+ cells), colony-forming unit assay, ELISA and nitric oxide (NO) analyzer, respectively. Soleus capillary/fiber ratio and protein expression of VEGF and endothelial NO synthase (eNOS) by western blot were assessed. Results: Exercise training was effective in reducing blood pressure in SHR-T accompanied by resting bradycardia, an increase in exercise tolerance, peak oxygen uptake (VO2) and citrate synthase activity. In response to hypertension, the amount of peripheral blood-EPC and number of colonies were decreased in comparison with control levels. In contrast, exercise training normalized the EPC levels and function in SHR-T accompanied by an increase in VEGF and NO levels. In addition, oxidative stress levels were normalized in SHR-T. Similar results were found in the number and function of bone marrow EPC. Exercise training repaired the peripheral capillary rarefaction in hypertension by a signaling pathway VEGF/eNOS-dependent in SHR-T. Moreover, improvement in EPC was significantly related to angiogenesis. Conclusion: Our data show that exercise training repairs the impairment of EPC in hypertension, which could be associated with peripheral revascularization, suggesting a mechanism for its potential therapeutic: application in vascular diseases.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
Non-mechanised sugarcane harvesting preceded by burning exposes workers and the people of neighbouring towns to high concentrations of pollutants. This study was aimed to evaluate the respiratory symptoms, lung function and oxidative stress markers in sugarcane workers and the residents of Mendonca, an agricultural town in Brazil, during the non-harvesting and harvesting periods and to assess the population and individual exposures to fine particulate matter (PM2.5). Sugarcane workers and healthy volunteers were evaluated with two respiratory symptom questionnaires, spirometry, urinary 1-hydroxypyrene levels, and the measurement of antioxidant enzymes and plasma malonaldehyde during the non-harvesting and harvesting periods. The environmental assessment was determined from PM2.5 concentration. PM2.5 level increased from 8 mu g/m(3) during the non-harvesting period to 23.5 mu g/m(3) in the town and 61 mu g/m(3) on the plantations during the harvesting period. Wheezing, coughing, sneezing, and breathlessness increased significantly in both groups during the harvesting period, but more markedly in workers. A decrease in lung function and antioxidant enzyme activity was observed in both populations during harvesting; this decrease was greater among the sugarcane workers. The urinary 1-hydroxypyrene levels only increased in the sugarcane workers during the harvesting period. The malonaldehyde levels were elevated in both groups, with a higher increase observed in the workers. This research demonstrates the exposure of sugarcane workers and the inhabitants of a neighbouring town to high PM2.5 concentrations during the sugarcane harvest period. This exposure was higher among the sugarcane workers, as illustrated by both higher PM2.5 concentrations in the sugarcane fields and higher urinary 1-hydroxypyrene levels in the volunteers in this group. The higher incidence of respiratory symptoms, greater decrease in lung function and more marked elevation of oxidative stress markers among the sugarcane workers during the harvest confirms the greater effect magnitude in this population and a dose-dependent relationship between pollution and the observed effects. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Be stars possess gaseous circumstellar decretion disks, which are well described using standard alpha-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter alpha = 1.0 +/- 0.2, corresponding to a mass injection rate (M) over dot = (3.5 +/- 1.3) x 10(-8) M-circle dot yr(-1). Such a large value of a suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.
Resumo:
Abuse of cocaine and androgenic-anabolic steroids has become a serious public health problem. Despite reports of an increase in the incidence of simultaneous illicit use of these substances, potential toxic interactions between cocaine and androgenic-anabolic steroids in the cardiovascular system are unknown. In the present study, we investigated the effect of single or combined administration of testosterone and cocaine for 1 or 10 consecutive days on basal cardiovascular parameters, baroreflex activity, and hemodynamic responses to vasoactive agents in unanesthetized rats. Ten-day combined administration of testosterone and cocaine increased baseline arterial pressure. Changes in arterial pressure were associated with altered baroreflex activity and impairment of both hypotensive response to intravenous sodium nitroprusside and pressor effect of intravenous phenylephrine. Chronic single administration of either testosterone or cocaine did not affect baseline arterial pressure. However, testosterone-treated animals presented rest bradycardia, cardiac hypertrophy, alterations in baroreflex activity, and enhanced response to sodium nitroprusside. Repeated administration of cocaine affected baroreflex activity and impaired vascular responsiveness to both sodium nitroprusside and phenylephrine. One-day single or combined administration of the drugs did not affect any parameter investigated. In conclusion, the present results suggest a potential interaction between toxic effects of cocaine and testosterone on the cardiovascular activity. Changes in baseline arterial pressure after combined administration of these 2 drugs may result from alterations in baroreflex activity and impairment of vascular responsiveness to vasoactive agents.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]
Resumo:
Background: Walking with high-heeled shoes is a common cause of venous complaints such as pain, fatigue, and heavy-feeling legs. The aim of the study was to clarify the influence of high-heeled shoes on the venous return and test the hypothesis that women wearing different styles of high-heeled shoes present an impaired venous return when compared with their values when they are barefoot. Methods: Thirty asymptomatic women (mean age, 26.4 years) wearing appropriately sized shoes were evaluated by air plethysmography (APG), a test that measures changes in air volume on a cuff placed on the calf, while they performed orthostatic flexion and extension foot movements and altered standing up and lying down. The test was repeated in four situations: barefoot (0 cm), medium heels (3.5 cm), stiletto high heels (7 cm), and platform high heels (7 cm). The APG values of venous filling index (VFI), ejection fraction (EF), and residual volume fraction (RVF) were divided into four groups according to heel height and compared by repeated-measures analysis of variance. Results: RVF was increased in the groups wearing high heels (stiletto and platform) compared with the barefoot group (P < .05). RVF was increased in the medium-heel group (3.5 cm) compared with the barefoot group (P < .05), and despite the lack of statistical significance, the medium-heel group showed lower values of RVF compared with the two high-heel groups. The EF parameter followed the opposite tendency, showing higher values for the barefoot group compared with the other three groups (P < .05). Values for VFI were similar in the three situations evaluated. Conclusions: High heels reduce muscle pump function, as demonstrated by reduced EF and increased RVF values. The continuous use of high heels tends to provoke venous hypertension in the lower limbs and may represent a causal factor of venous disease symptoms. (J Vasc Surg 2012;56:1039-44.)
Resumo:
Purpose: Dyslipidemia is characterized by high lipid blood levels that are risk factors for cardiovascular diseases, which are leading causes of death. However, it is unclear whether dyslipidemia is a cause of the dry eye syndrome (DES). Therefore we determined in transgenic mice models of dyslipidemia, whether there is an association with DES development. Methods: Dyslipidemic models included male and female adult mice overexpressing apolipoprotein CIII (Apo CIII), LDL receptor knockout (LDLR-KO) and ApoE knockout (ApoE-KO). They were compared with age-and gender-matched C57BL/6 mice. Ocular health was evaluated based on corneal slit lamp assessment, phenol red thread test (PRT) and impression cytology. Blood lipid profiles and histology of meibomian and lacrimal glands were also evaluated. Effects of high-fat diet and aging were observed in LDLR-KO and ApoCIII strains, respectively. Results: Body weight and lacrimal gland weight were significantly higher in male mice compared to females of the same strain (P < 0.05). Body weight was significantly lower in LDLRKO mice receiving high lipid diet compared to their controls (P = 0.0043). ApoE-KO were hypercholesterolemic and ApoCIII hypertriglyceridemic while LDLR-KO showed increases in both parameters. The PRT test was lower in male LDLR-KO mice with high-fat diet than control mice with standard diet (P = 0.0273). Aging did not affect lacrimal structural or functional parameters of ApoCIII strain. Conclusions: DES development is not solely dependent on dyslipidemia in relevant mice models promoting this condition. On the other hand, lacrimal gland structure and function are differentially impacted by lipid profile changes in male and female mice. This dissociation suggests that other factors beside dyslipidemia impact on tear film dysfunction and DES development.
Resumo:
Background The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.
Resumo:
The pulmonary surfactant has essential physical properties for normal lung function. The most important property is the surface tension. In this work, it was evaluated the surface tension of two commercial exogenous surfactants used in surfactant replacement therapy, poractant alfa (Curosurf, Chiesi Farmaceuticals, Italy) and beractant (Survanta, Abbott Laboratories, USA) using new parameters. A Langmuir film balance (Minitrough, KSV Instruments, Finland) was used to measure surface tension of poractant alfa and beractant samples. For both samples, we prepared a solution of 1 mg/m dissolved in chloroform (100π`), which was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximal value of 112.5 cm 2 , and a minimal value of 22.5 cm 2, defining a balance cycle. Each surfactant had its surface tension evaluated during 20 balance cycles for three times. Four quantities were calculated from the experiment: Minimum Surface Tension (MTS), defined as the surface tension at minimal surface area during the first cycle; Mean Work Cycle (MWC), defined as the mean hysteresis area of the measured surface tension curve of the last 16 balance cycles; Critical Active Surface Area in Compression (CASAC) or in Expansion (CASAE), defined as the maximal chamber area where the surfactant is active on the surface in compression or expansion. The t-test was applied to verify for statistical significance of the results. Comproved with the MST is the same reported in literature, the differences between MWC, CASAC, and CASAE were statistically significant (p<0.001). The MWC, CASAC and CASAE were higher for poractant alfa than for beractant. A higher MWC for poractant alfa means higher elastic recoil of the lung in comparison with beractant. Using a different methodology, our results showed that poractant alfa is probably more effective in a surfactant replacement therapy than beractant due the use of poractant alfa in relation to the use of beractant in preterm infants with Respiratory Distress Syndrome (RDS).
Resumo:
Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.
Resumo:
A number of mechanisms have been proposed to explain the pleiotropic effect of statin therapy to reduce sympathetic outflow in cardiovascular disease. We tested the hypothesis that statin treatment could improve baroreflex gain-sensitivity triggered by morphological adaptations in the mechanoreceptor site, thus reducing sympathetic activity, regardless of arterial pressure (AP) level reduction. Male spontaneously hypertensive rats (SHR) were divided into control (SHR, n = 8) and SHR-simvastatin (5 mg/kg/day, for 7 days) (SHR-S, n = 8). After treatment, AP, baroreflex sensitivity (BRS) in response to AP-induced changes, aortic depressor nerve activity, and spectral analyses of pulse interval (PI) and AP variabilities were performed. Internal and external carotids were prepared for morphoquantitative evaluation. Although AP was similar between groups, sympathetic modulation, represented by the low frequency band of PI (SHR: 6.84 ± 3.19 vs. SHR-S: 2.41 ± 0.96 msec2) and from systolic AP variability (SHR: 3.95 ± 0.36 vs. SHR-S: 2.86 ± 0.18 mmHg2), were reduced in treated animals. In parallel, simvastatin induced an increase of 26% and 21% in the number of elastic lamellae as well as a decrease of 9% and 25% in the carotid thickness in both, external and internal carotid, respectively. Moreover, improved baroreceptor function (SHR: 0.78 ± 0.03 vs. SHR-S: 1.06 ± 0.04% mv/mmHg) was observed in addition to a 115% increase in aortic depressor nerve activity in SHR-S rats. Therefore, our data suggest that the reduction of sympathetic outflow in hypertension by simvastatin treatment may be triggered by structural changes in the carotid arteries and increased BRS in response to an improvement of the baroreceptors discharge and consequently of the afferent pathway of the baroreflex arch.
Resumo:
Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity.